
International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 9, 2025

116

Abstract—This article describes our experience of

introducing undergraduate students to formal methods using
the interactive proof assistant Rocq. The goals of the course

include sharpening students' skills in writing strict

mathematical proofs both on paper and on a computer, as well

as demonstrating practical applications of mathematical logic.

At the end of the course students do group projects where they
specify and verify an algorithm, such as finding maximum in a

one- or two-dimensional array, checking if a number is prime

or computing an integer root of an equation.

We tried to minimize nontrivial aspects of Rocq and use the

most of the material already familiar to students. This

comparative simplicity, which is appropriate for the first
introduction to formal methods, distinguishes the course from

its analogs.

Keywords—Interactive proof assistant Rocq, Formal

methods, Program verification, Education.

I. INTRODUCTION

This article describes the experience of introducing

students to formal methods using the interactive proof

assistant Rocq. The course is called “Foundations of

Computer Science” [1]; it is taught to fourth year

undergraduate students majoring in mathematics in the

Institute of Information Technologies, Mathematics and

Mechanics in Lobachevsky State University of Nizhny

Novgorod, Russia.

Formal methods are mathematically based languages,

techniques and tools for specifying, developing and

verifying software and hardware systems [2]. These tools

become indispensable as both system complexity and the

price of error grow. That's why formal methods are

extensively used in such areas as aerospace industry [3] and

design of processors [4] and network protocols [5]. Many

tasks, such as program verification, are already achievable at

least in theory, though in pra ctice the development of fully

verified software is often not feasible due to high cost.

Nevertheless, there is hope that rapid development will

bring the cost of verification down and formal methods will

gain wide acceptance. One evidence of that is several

hundred conferences and workshops related to formal

methods that take place every year.

Some of the most useful tools employed in formal

methods are automated or fully automatic proof assistants,

or theorem provers [6]. These programs can be used to

formalize both proofs in pure mathematics and proofs

related to algorithm correctness. First theorem provers

Manuscript received August 15, 2025.
E. M. Makarov is with the Institute of Information Technologies,
Mathematics and Mechanics, Lobachevsky State University, Nizhny

Novgorod 603022, Russia (phone: +7-952-777-2045; e-mail:
evgeny.makarov@itmm.unn.ru).

appeared in the 1950s, and the 1980s witnessed the

beginning of the development of such systems as Rocq,

HOL Light and ACL2, which are still widely used today.

The course described here is not one of the core

disciplines in the mathematics curriculum. There are weekly

labs that take one and a half hours each. The course covers

different topics during the two years that it is taught. Two

semesters of the third year support the numerical methods

course, while the fall and spring semesters of the last year

are devoted to studying functional programming and

computer-assisted theorem proving, respectively. The last

part of the spring semester is allotted to f inishing bachelor's

thesis, so this semester lasts for twelve weeks instead of the

usual sixteen. This makes it difficult to thoroughly introduce

formal methods or even teach working with one proof

assistant. Therefore, the course covers only elementary

program specification and verification. This is its main

difference from other courses, which cover mathematical

foundations and subtleties of working with Rocq to a greater

degree. A comparison with similar courses is found in

Sect. VI.

The greater part of the course is spent learning how to use

Rocq, and the last three or four weeks are devoted to group

projects. We avoid teaching complex inductive types and

predicates and only cover introduction to type theory, which

is the foundation of Rocq.

Having studied mathematical logic during the previous

semester, students are familiar with first-order formulas, free

and bound variables and either natural deduction or

Gentzen's sequent calculus. If time allows, the logic course

also covers lambda calculus, which underlies type theory

used in Rocq. Lambda calculus is also studied in the

functional programming course that runs parallel to the logic

course. These things are helpful, but not indispensable to

studying proof assistants.

Computer-aided software verification, in turn, provides a

much-desired real-world application of mathematical logic.

Students get a chance not just to write a program, which

they have done numerous times in other courses, but to

prove its correctness as well. Of course, algorithms offered

in course projects are very simple, and it may look like

efforts required to explain seemingly obvious details to a

computer are not worth it. Some of these difficulties indeed

come from the annoying failure of a computer to understand

things that are obvious to people; however, others point to

errors in the algorithm or its specification. Therefore the

level of precision required in this course exceeds the

corresponding level in other areas, such as epsilon-delta

proofs in calculus. In our opinion, writing such proofs is

beneficial to mathematics majors because it demonstrates

that no proof step has to rely on intuition; rather, every step

is described by precise inference rules.

Introduction to Formal Methods

Using Interactive Proof Assistant Rocq

Evgeny M. Makarov

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 9, 2025

117

The contributions of the article are as follows. The course

is described in sufficient detail for anyone familiar with

Rocq to implement a similar one. We show that discussing

type theory and more advanced aspects of Rocq can be kep t

to a minimum, and thus it is possible to introduce students to

a modern proof assistant even during a n abbreviated

semester. Finally, we discuss how writing computer-assisted

proofs develops skills that are different from those in other

mathematical disciplines.

The rest of the article has the following structure. The

next section introduces the Rocq proof assistant. Sect. III

describes topics studied during the main part of the course.

Sect. IV lists examples of projects. Sect. V discusses proof-

writing skills. Sect. VI compares this course to similar ones.

Finally, Sect. VII sums up and describes future work.

II. INTRODUCTION TO ROCQ THEOREM PROVER

Interactive theorem prover Coq [7]–[8] has been

developed in the French research institute INRIA since the

1980s. In 2025 it was renamed into Rocq. The development

is ongoing, and new versions come out approximately every

five months. Rocq is one of the most advanced and widely

used computer proof systems both in academia and in the

industry. This is why working with Rocq is an excellent way

of introducing students to formal methods.

Rocq was used to prove a number of nontrivial results

both in pure mathematics and in computer science. In the

end of the 1990s Rocq was used to formalize a constructive

proof of the fundamental theorem of algebra. This

theoretically allowed computing a root of every non-

constant polynomial with required precision. In practice the

program extracted from the proof was too slow. Therefore a

library of constructive algebra and analysis was developed

that used a more efficient representation of real numbers.

The work in this direction is ongoing [9].

In 2005 a complete proof of the four color theorem was

formalized, including the correctness of the program that

verified a large number of special cases [10]. In the same

year Rocq was used to prove the first Gödel's

incompleteness theorem [11]. In 2012 the Feit-Thompson

Odd Order Theorem was proved in Rocq [12] (the original

proof published in 1963 contained 255 pages). An example

of an important project in computer science is CompCert—a

compiler for a significant fragment of the C programming

language whose specification, implementation and

verification were all done in Rocq [13]. The complexity of

the correctness proof for a program of such scale defies

imagination.

Rocq is based on type theory called the Calculus of

Inductive Constructions (CIC). It is an expressive variant of

typed lambda calculus, which, due to Curry-Howard

correspondence, serves both as a functional programming

language and as a logical calculus. The main judgment in

type theory is Γ⊢t: A, which says that in context Γ that

contains types of free variables term t has type A. This

judgment can also be read as saying that t is a proof of

theorem A.

CIC uses dependent types that can contain terms. The

most important inference rules are the following.

 (1)

Here fun x: A ⇒ t denotes a function with argument x of

type A and body t, and B[t2/x] denotes the result of

substituting term t2 for variable x in type B. These rules

show that ∀x: A, B is a dependent product, or the type of

functions whose range depends on the value of their

argument x. Simultaneously ∀x: A, B is a proposition saying

that B is true for every x of type A.

Implication A → B, which is also a type of simple

functions from A to B, is a contraction of ∀x: A, B when x

does not occur freely in B. Other logical connectives—

conjunction, disjunction and existential quantifier—are

defined using inductive types. However, a Rocq user does

not need to know this since the Rocq library contains the

usual introduction and elimination rules for these

connectives.

Another important inference rule of Rocq is the

conversion rule, which makes sense due to the presence of

dependent types.

Here β, ι, δ and ζ are different types of reductions on terms,

of which the best known is β-reduction.

(fun x : A ⇒ t1)t2 →β t1[t2/x]

Notation A =βιδζ B means that type B can be obtained from A

using a chain of reduction and reverse reductions.

Reductions define the operational semantics of Rocq, and

the equivalence relation that they generate is sometimes

called equality by definition. Thus the rule above says that a

proof of a proposition is simultaneously a proof of another

proposition that is obtained from the first one by replacing

some terms with others that are equal by definition. For

example, a constant eq_refl has the type, or, equivalently,

is a proof of reflexivity of equality ∀A : Type, ∀x : A, x = x,

so eq_refl 4 is a proof of 4 = 4.1 However, term 2 + 2

reduces to 4, so eq_refl 4 is also a proof of 2 + 2 = 4. The

distinction between definitional equality and the so-called

Leibniz equality, which is most commonly used in

mathematics, is described by the Poincaré principle, which

postulates the difference between a proof and a verification :

the latter is considered trivial and is not considered a part of

a proof. The conversion rule allows Rocq, unlike many other

proof assistants, using proofs by reflection, when a

procedure for deciding a certain problem is both written and

verified in Rocq.

Inference rules of CIC are relatively few and well studied

in mathematics. Their implementation is collected in a so-

called kernel. Other parts of the proof assistant can try to

build a proof, but only the kernel checks if the proof is

correct. Having a relatively small kernel that can be checked

independently is called the de Bruijn principle. It increases

trust in the system.

Rocq has natural syntax that makes it easier to use it in

education. For example, here is the definition of prime

1We omitted the implicit argument nat of eq_refl which is u sually

not printed by Rocq.

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 9, 2025

118

numbers.

Definition prime (n : nat) : Prop :=
 1 < n /\
 forall d, 1 < d -> d < n -> ~(d | n).

Rocq also has rich facilities for defining new notations

and can use Unicode symbols, which allows, for example,

writing ∀ n instead of forall n.

Fig. 1. Integrated development environment RocqIDE

Rocq is freely distributed for Linux, Windows and

macOS. It includes an integrated environment RocqIDE for

writing proofs. The program window, shown in Fig. 1,

consists of three parts. The left one contains a file with

definitions, theorems and proofs. A proof consists of so-

called tactics, which are admissible inference rules from the

logical standpoint. Rocq checks application of each tactic,

and when there are no errors, it paints commands that have

already been executed in green. This area can no longer be

changed by the user, though it is possible to undo several

steps or start the proof from the beginning.

The top right part of the window shows the current goal,

which is a judgment of the form Γ⊢t: A. The context Γ,

which contains variables and assumptions used in the proof ,

is written vertically. Instead of the symbol ⊢ there is a

horizontal line. Below it is the statement currently being

proved. At each moment there can be several goals, and the

user works with one of them. Finally, the bottom right

corner shows messages, such as results of searching lemmas

in the standard library or error messages.

The user starts a proof from the theorem statement and

uses tactics to convert it to other goals. Thus, a proof is

usually built bottom up, i.e., from the final proposition to

axioms. However, there are tactics that produce corollaries

of existing theorems and assumptions.

III. COVERED TOPICS

As was said in the introduction, this course is abbreviated

and lasts only twelve weeks. There are no dedicated

lectures, only labs in a computer class. In the first part of the

class the instructor explains the new material, and in the

second part students work on assignments. Unsolved

exercises are left as homework. Below are topic for each

week's classes.

Week 1. Basic syntax. Propositional logic. Connection

between Rocq tactics and inference rules from the

mathematical logic course. Focusing proofs using special

symbols *, + and - to indicate where the proof of each

subgoal starts and ends. Simple automatic tactics trivial,

auto, easy). Using the integrated environment.

Examples of statements that students should be able to

prove.

Theorem disj_premise :
 (A \/ B -> C) -> (A -> C) /\ (B -> C).
Theorem deMorgan :
 (~A \/ ~B) -> ~(A /\ B).

Week 2. Predicate logic. Tactics working with quantifiers

and their comparison with standard logical inference rules.

The simplest ; for joining tactics.

Examples of statements.

Theorem t1 : (forall x : T, P x) \/
 (forall x : T, Q x) →
 (forall x : T, P x \/ Q x).

Theorem t2 :
 ((exists x, P x) -> forall x, Q x) →
 forall x, P x -> Q x.

Week 3. Leibniz, or provable, equality. Rewriting tactics.

Peano arithmetic. Defining functions using recursion;

definitional equality that they generate. Proof by induction

on natural numbers.

Examples of statements: associativity, commutativity of

addition and multiplication; distributivity of multiplication

with respect to addition.

Week 4. Automatic tactics for proving statements in

Presburger arithmetic and polynomial equalities (lia and

ring). Searching the standard library for theorems.

Commands for printing information about terms. Unification

of a goal and a statement done by the apply tactic.

Examples of statements.

Theorem sum_progression :
 forall n, 2 * sum n = n * (n + 1).
Theorem sum_cubes :
 forall n, sumCubes n = (sum n)^2.

Week 5. Introduction to Curry-Howard correspondence

between terms and proofs and between types and theorems.

Simply typed lambda calculus. Dependent types.

Explanation why applying a lemma to an argument

corresponds to universal quantifier elimination inference

rule (1). Proving arithmetic facts.

Example of statements.

Theorem lt_S_r :
 forall m n, m < S n -> m = n \/ m < n.

Here S denotes the successor function that adds 1 to its

argument. It is used in Peano axioms.

Week 6. Difference between types Prop and bool. Using

predicates that return bool in programs. Proofs by cases on

the the truth value of bool predicates using reflection of

sort Prop in type bool [14, vol. 1]. Representing an array

as a function on natural numbers and a natural number:

array's length. Defining recursive functions on arrays, such

as finding array's maximum. Full specification of such

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 9, 2025

119

functions.

Examples of statements.

Theorem arrayMaxSpec1 :
 forall n i,
 i <= n -> array i <= arrayMax n.

Theorem arrayMaxSpec2 :
 forall n, exists i,
 i <= n /\ array i = arrayMax n.

Week 7. Finishing verification of the maximum function

on arrays. Dependent sums and existential quantification.

Program extraction from constructive proofs.

Week 8. Induction with several bases and parameters.

Strong induction. Simplifying recursive functions tactics

cbn and simpl). Additional tactics (discriminate,

simplify_eq, contradict, intuition). Choosing

group projects.

Weeks 9–12. Working on projects and presenting them to

the class or the instructor.

IV. COURSE PROJECTS

During the last three or four weeks of the course students

work on projects in groups of two or three. In each case the

task is to write an algorithm and prove that it conforms to it s

specification. Unfortunately, there is not enough time to

listen to students' presentations, even though creating a

presentation and addressing the audience would be a

valuable experience.

Project 1. Check if an array is sorted. One has to write a

definition and prove a theorem as follows.

Fixpoint arraySorted (n: nat): bool := …

Definition sorted (n : nat) : Prop :=
 forall i1 i2, i1 < i2 -> i2 < n →
 array i1 <= array i2.

Theorem arraySortedSpec:
 forall n,
 sorted n <-> arraySorted n = true.

Function arraySorted checks if an array of length n is

sorted in non-decreasing order (the array itself is a

parameter), and predicate sorted is its specification. The

theorem relates the two concepts.

Project 2. For given f : nat → nat and n : nat

determine if the restriction of f on {0, ..., n} is an

injection.

Project 3. For given f : nat → nat and m n : nat

determine if {0, ..., n} ⊆ {f 0, ..., f m}. In

other words, if f maps {0, ..., m} to {0, ..., n},

one must determine if f is a surjection.

Project 4. Determine if a number occurs in a 2D array

represented by a function of type nat -> nat -> nat

together with the numbers of rows and columns.

Project 5. Find the greatest divisor (not necessarily prime)

of a number smaller than the number itself.

Project 6. Find the greatest common divisor of numbers m

and n using the Euclidean algorithms or the search from min
m n to 1.

Project 7. Check if a natural number is prime.

Project 8. Check if an array is a palindrome, i.e., ∀ i j,

i + j = n → a i = a j holds.

Project 9. Prove the equivalence of two function

definitions that use tail and nontail recursion. One can

consider addition, multiplication, factorial and Fibonacci

numbers.

In order to prove the equivalence of the highly inefficient

but standard function fib and the efficient but less obvious

function fibIter defined as follows:

Fixpoint fib (n : nat) :=
match n with
| 0 => 0
| S 0 => 1
| S (S p as q) => fib q + fib p
end.

Fixpoint fibIter (n : nat) (a : nat) (b :
nat) :=
match n with
| 0 => a
| S p => fibIter p b (a+b)
end.

one has to come up with a nontrivial invariant, e.g.,

Lemma fib_eq_iter :
 forall a n, fib (n+a) =
 fibIter n (fib a) (fib (a+1)).

Then the desired result

Theorem fib_eq :
 forall n, fibIter n 0 1 = fib n.

easily follows.

Project 10. Find an integer root of an equation f x = y

where f is an unbounded function and f 0 <= y.

Project 11. Implement addition of two numbers

represented by function of type nat -> nat and prove its

correctness.

Project 12. Find the value of a polynomial at a point

using Horner's method and prove that it is equal to the value

computed in the usual way.

Project 13. Prove the following theorem.

Variables f g : nat -> nat.
Hypothesis notSurjection :
 forall n, g n <> 0.
Theorem fgf : exists n, f (g (f n)) <> n.

This statement has a constructive and a nonconstructive

proofs. Finding the required n without an unbounded search

requires some ingenuity.

Project 14. Prove the pigeonhole principle: if

f : {0, …, n} → {0, …, n-1}, then there exist i and

j such that 0 ≤ i < j ≤ n and f(i) = f(j).

Functions that modify arrays, such as various sorting

algorithms, are also good candidates for course projects, but

their proofs are more complicated because one has to show

that changing one array element does not affect others.

V.SKILLS DEVELOPED BY WRITING FORMAL PROOFS

This section describes how working with a proof assistant

can help mathematics majors develop proof-writing skills.

Prior to this course students have already covered almost all

undergraduate curriculum including courses like

“Differential Geometry and Topology,” “Number Theory,”

“Mathematical Logic” and “Lie Groups and Algebras,” so

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 9, 2025

120

the students' ability to comprehend and write complex

proofs is in no doubt. This course goes in the direction that

is in some sense opposite to the disciplines mentioned

above. Indeed, though it covers elementary facts about

natural numbers and proofs by induction, attempting to

explain a proof to a computer leads to numerous difficulties

with statements that are intuitively obvious. The course

strives to overcome those difficulties by teaching students

construct highly detailed and rigorous proofs and think

about proof steps in terms of known inference rules.

This distinction reminds two ways of studying

mathematics described by the philosopher and

mathematician Bertrand Russell in his book “Introduction to

Mathematical Philosophy” [15].

Mathematics is a study which, when we start from

its most familiar portions, may be pursued in either

of two opposite directions. The more familiar

direction is constructive, towards gradually

increasing complexity: from integers to fractions, real

numbers, complex numbers; from addition and

multiplication to differentiation and integration, and

on to higher mathematics. The other direction, which

is less familiar, proceeds, by analysing, to greater and

greater abstractness and logical simplicity…

We may state the same distinction in another way.

The most obvious and easy things in mathematics are

not those that come logically at the beginning; they

are things that, from the point of view of logical

deduction, come somewhere in the middle. Just as

the easiest bodies to see are those that are neither

very near nor very far, neither very small nor very

great, so the easiest conceptions to grasp are those

that are neither very complex nor very simple (using

“simple” in a logical sense). And as we need two

sorts of instruments, the telescope and the

microscope, for the enlargement of our visual

powers, so we need two sorts of instruments for the

enlargement of our logical powers, one to take us

forward to the higher mathematics, the other to take

us backward to the logical foundations of the things

that we are inclined to take for granted in

mathematics.

Here are some examples of complications faced by

students during proofs of seemingly obvious facts.

Greatest Divisor. Project 5 from Sect. IV asks to write a

function f(n) that computes the greatest divisor of n smaller

than n itself. One can define an auxiliary function g(n, k) by

recursion on k that returns the greatest divisor of n smaller

than k; then f(n) = g(n, n). Specification of g says, in

particular,

 ∀n∀k∀j (g(n, k) < j → j < k → ¬(j | n)) (2)

where j | n means that j divides n. This statement is proved

by induction on k. In the induction step one has to show

that (2) and g(n, S(k)) < j < S(k) imply ¬(j | n) (to remind, S

is the successor function). If k divides n, then g(n, S(k)) = k

and k < j < S(k) is impossible on natural numbers. Otherwise

by definition g(n, S(k)) = g(n, k), and one has to show that

g(n, k) < j < S(k) implies ¬(j | n). This claim is very similar

to (2), but if one tries to derive ¬(j | n) using (2) at this point,

one has to prove its premise j < k from j < S(k), which is

impossible. Of course, ¬(k | n) holds by assumption, and

¬(j | n) for j < k follows from the induction hypothesis.

A large part of difficulties faced by students are similar.

Without a clear plan proof attempts ca n degenerate into a

syntactic game where a students tries to apply all available

theorems and assumptions. This is why it is important to

have a detailed paper proof, which is then consistently being

implemented in Rocq. At each step the student must be

aware of the state of the formalization process.

Induction with Initial Value Different from Zero . When

dealing with prime numbers one often has to prove

statements like ∀n (1 < n → P(n)) from P(2) and

 ∀n(1 < n → P(n) → P(S(n))). (3)

This has to be done using regular mathematical induction.

The base is 1 < 0 → P(0), which is trivially true. The

induction step amounts to showing that ∀n (1 < n → P(n))

implies ∀n (1 < S(n) → P(S(n))).

An attempt to use (3) to prove P(S(n)) leads to the need to

prove 1 < n from 1 < S(n), i.e., 0 < n, which is impossible.

The right approach is to consider cases n = 0, n = 1 and

1 < n. In the first case the premise 1 < S(n) is false, in the

second one P(S(n)) is P(2), which holds by assumption, and

in the last case P(S(n)) follows from the induction

hypothesis and (3).

A math major has to know that different types of

induction on natural numbers, including strong induction,

are derived from the standard induction principle.

Multiparameter Induction. Often the statement proved for

all n by induction has the form ∀k P(n, k). It is a good idea

to keep the quantifier on k in the induction hypothesis

instead of fixing k in the whole proof.

As an example, consider decidability of equality on

natural numbers, which can be implemented a s follows.

Fixpoint eqb (x y : nat) : bool :=
match x, y with
| 0, 0 ⇒ true
| 0, S _ ⇒ false
| S _, 0 ⇒ false
| S x1, S y1 ⇒ eqb x1 y1
end.

One has to prove ∀x∀y eqb(x, y) = true ↔ x = y). The

proof proceeds by induction on x and considering cases

y = 0 and y = S(z) for some z (the induction hypothesis on y

is not needed).

The induction predicate on x should be ∀y (eqb(x,

y) = true ↔ x = y) and not just eqb(x, y) = true ↔ x = y

because the claim for S(x) and S(y) are derived from the

similar claim for x and y and not for x and S(y). This is an

important detail that is easy to miss in paper proofs.

“Without Loss of Generality.” Let P(x, y) be a symmetric

relation on natural numbers. It is clear that to show P(x, y)

for all x and y it is sufficient to consider the case x ≤ y.

Usually this is conveyed by the phrase, “Without loss of

generality, assume that x ≤ y.” However, representing this

phrase as a precise inference rule is a nice exercise. In this

case P(x, y) is derived from assumptions ∀u∀v (u ≤ v →

P(u, v)) → P(x, y) and x ≤ y → P(x, y) (see the tactic wlog

in the description of SSReflect in [8]).

Pigeonhole Principle. This principle, whose statement is

given in project 14, is a striking example of a proposition

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 9, 2025

121

whose proof contains details one does not think about at

first. In fact, a formal proof contains a program that, given a

function f with the given domain and codomain, returns

distinct numbers i and j such that f(i) = f(j). And yet at first

glance this program seems less obvious than the proof that

contains it.

The proof proceeds by induction on n. In the induction

step one has to show that f:{0, …, n+1} → {0, …, n} is not

injective. If there exits an i ≤ n such that f(i) = f(n+1), then

the claim is proved. Suppose f(n+1) is different from all

previous values. If f(n+1) = n, then the induction hypothesis

applies to f restricted to {0, …, n}. If f(n+1) < n, consider a

function g defined on {0, …, n} where g(i) = f(n+1) if

f(i) = n and g(i) = f(i) otherwise. It is easy to show that if g is

not injective, then neither is f. Then the induction hypothesis

applies to g.

Formalizing proof of the pigeonhole principle is more

complicated than other projects, but it is achievable for a

conscientious student.

VI. COMPARISON WITH SIMILAR COURSES

Theorem provers have been used in education over the

last twenty years. One of the most interesting projects is the

electronic textbook Software Foundations [14] by

B.C. Pierce et al. This is an introduction to formal methods

used for producing reliable software. This book, which

currently consists of six volumes, covers a multitude of

topics: propositional and predicate logic, definitions and

proofs by induction, Hoare logic, simply typed lambda

calculus, functional programming, etc. A remarkable feature

of the book is that all definitions, theorem and proofs are

implemented in Rocq. In fact, the book is a collection of

Rocq files where regular text is written in comments and the

reader is invited to replay provided proofs step by step and

to write their own. The main goal is not just to make readers

proficient in Rocq, but to provide definitions and proofs

using a new level of rigor and to demonstrate that proof

assistants can be used in education along with traditional

textbooks.

The paper [16] describes a system ProofWeb that

underlies several online courses using Rocq. Students don't

need to install Rocq on their machines; they work with the

system remotely using the web interface. Each student has

an account that stores passed tests, graded exercises, etc.

Each course has a required supply of notes and exercises.

The ProofWeb system has been used for teaching both

master's level courses in verification and type theory and

introductory logic courses. The authors created Rocq tactics

that closely resemble the standard inference rules of natural

deduction. ProofWeb can also show constructed derivations

as trees, the way they are usually presented in logic courses.

An interesting Rocq-based course in the National

University of Singapore is described in [17]. On the one

hand, it is geared toward undergraduate students; on the

other, it covers a large number of topics: propositional,

predicate, modal and Hoare logics. Also, Rocq is used as a

metalanguage for studying various logics as objective

languages. This is an interesting approach, but it requires

more than one lab a week as in our course.

The article [18] describes an attempt to teach students

writing proofs beginning with fully formal ones and

gradually moving towards textbook-style proofs.

A curious project is described in [19]. It combined a

popular dynamic geometry software GeoGebra and Rocq.

Interface with Rocq is implemented as a window inside

GeoGebra. A user can draw a configuration of points and

lines and form a hypothesis saying, for example, that two

segments have equal lengths. The user can then

experimentally confirm the hypothesis by moving free

vertices and observing whether the statement remains true.

Then the configuration can be transferred from GeoGebra t o

Rocq, and the user can write a formal proof of the

hypothesis using geometric theorems from the library.

Other theorem provers are also used in education. For

example, a project using the Isabelle proof assistant for

teaching programming language semantics is described

in [20].

VII. CONCLUSION AND FUTURE WORK

This article describes our experience introducing

mathematics majors to formal methods using the interact ive

proof assistant Rocq. We have shown how this gives a fresh

look on proofs and helps develop a different set of skills

than those cultivated by other math disciplines.

The experience shows that it is possible to teach the

basics of working with a state-of-the-art proof assistant

despite the course's limited length. It helps that

mathematical logic is studied during the previous semester,

so it is possible to leverage students' familiarity with

concepts like the syntax of first-order formulas and natural

deduction. Our course minimizes nontrivial aspects of Rocq,

such as complex inductive types and predicates. Of course,

inductive predicates such as ≤ on natural numbers are used

extensively, but one works with them using theorems from

the standard library and automatic tactics rather than their

inductive definitions. Of all numerical types only natural

numbers are used. Arrays are modeled by functions on

natural numbers. The Curry-Howard correspondence, which

is the foundation of Rocq, can be described as time permits.

Teaching this course for seven years has shown that

students are usually able to prove at least a partial

specification of an algorithm as a final project. Still, despite

the fact that technically these proofs are quite simpler than

those, say, from bachelor's theses, many students experience

difficulties not just with writing proofs in Rocq, but with

constructing detailed proofs on paper as well.

We plan to further develop the course by creating slides

and accompanying course notes. They may allow

condensing the presentation and using the freed time to

describe simple inductive types, such as lists, and their

corresponding induction principles. Another possible

direction is studying not interactive but fully automatic

systems for proving program correctness. For this purpose

one can use the Why3 tool [21], which is based on Hoare

logic and the calculus of weakest preconditions. Why3 can

work with a large number of automatic provers (most of

which work with first-order logic, unlike Rocq) and is also

widely used both in academia and in the industry.

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 9, 2025

122

REFERENCES

[1] E. Makarov. (2025). Algorithm verification using the interactive

theorem prover Rocq, [Online]. Available:
https://evgenymakarov.github.io/unnfcs2019/.

[2] E. M. Clarke and J. M. Wing, “Formal methods: State of the ar t an d
future directions,” ACM Comput. Surv., vol. 28, no. 4, pp. 626 –64 3,

1996. DOI: 10.1145/242223.242257.
[3] E. Feron, “Formal methods for aerospace applications ,” in Forma l

Methods in Computer-Aided Design. FMCAD 2012, IEEE, 2012, p. 3.

[4] W. A. Hunt Jr., M. Kaufmann, J. S. Moore, and A. Slobodova,
“Industrial hardware and software verification with ACL2,” Philo s
Trans A Math Phys Eng Sci., vol. 375, no. 2104, 2017. DOI:
10.1098/rsta.2015.0399.

[5] C. Newcombe, T. Rath, F. Zhang, B. Munteanu, M. Brooker, and M.
Deardeuff, “How Amazon web services uses formal methods,”
Commun. ACM, vol. 58, no. 4, pp. 66–73, 2015. DOI:
10.1145/2699417.

[6] F. Wiedijk, The Seventeen Provers of the World, ser. Lecture Notes
in Artificial Intelligence. Berlin, Heidelberg: Springer-Verlag, 2 006 ,
vol. 3600. DOI: 10.1007/11542384.

[7] Y. Bertot and P. Castéran, Interactive Theorem Proving an d Prog ram

Development. Coq’Art: The Calculus of Inductive Constructions, s er .
Texts in Theoretical Computer Science. An EATCS Series. Springer,
2004. DOI: 10.1007/978-3-662-07964-5.

[8] The Rocq Development Team, The Rocq Reference Manual, version
9.0.0. INRIA, 2025. [Online]. Available: https://rocq-
prover.org/doc/V9.0.0/refman/index.html.

[9] E. Makarov and B. Spitters , “The Picard algorithm for ordinary

differential equations in Coq,” in Interactive Theorem Proving. ITP
2013, S. Blazy, C. Paulin-Mohring, and D. Pichardie, Eds., ser.
Lecture Notes in Computer Science, vol. 7998, Springer , 2 013 , p p .
463–468. DOI: 10.1007/978-3-642-39634-2_34.

[10] G. Gonthier, “Formal proof—the four-color theorem,” Notices Amer.
Math. Soc., vol. 55, no. 11, pp. 1382–1393, 2008.

[11] R. O’Connor, “Essential incompleteness of arith metic v er ified b y
Coq,” in Theorem Proving in Higher Order Logics. TPHOLs 2005, J.

Hurd and T. Melham, Eds., ser. Lecture Notes in Computer Science,
vol. 3603, Springer, 2005, pp. 245–260. DOI: 10.1007/ 11541868_16.

[12] G. Gonthier et al., “Machine-checked proof of the odd order
theorem,” in 4th Conference on Interactive Theorem Proving, TP

2013, ser. Lecture Notes in Computer Science, vol. 7998, 2 013 , p p .
163–179. DOI: 10.1007/978-3-642-39634-2_14.

[13] R. Krebbers, X. Leroy, and F. Wiedijk, “Formal C semantics:

CompCert and the C standard,” in Interactive Theorem Proving. ITP
2014, G. Klein and R. Gamboa, Eds., ser. Lecture Notes in Computer
Science, vol. 8558, Springer, 2014, pp. 543–548. DOI: 10.1007/97 8-
3-319-08970-6_36.

[14] B. C. Pierce et al., Software Foundations. Electronic textbook, 2025.
[Online]. Available: https://softwarefoundations.cis.upenn.edu/.

[15] B. Russell, Introduction to Mathematical Philosophy. Dover
Publications, 1993.

[16] M. Hendriks, C. Kaliszyk, F. van Raamsdonk, and F. Wiedijk,
“Teaching logic using a state-of-the-art proof assistant,” Acta
Didactica Napocensia, vol. 3, no. 2, pp. 35–48, 2010.

[17] M. Henz and A. Hobor, “Teaching experience: Logic and formal

methods with Coq,” in Certified Programs and Proofs, J.-P.
Jouannaud and Z. Shao, Eds., Springer, 2 0 11, p p.19 9–2 15. DOI :
10.1007/978-3-642-25379-9_16.

[18] S. Böhne and C. Kreitz, “Learning how to prove: From the Coq proof
assistant to textbook style,” in Proceedings 6th International Workshop
on Theorem Proving Components for Educational Software, P.
Quaresma and W. Neuper, Eds., ser. Electronic Proceedings in

Theoretical Computer Science, vol. 267, Open Publishing
Association, 2018, pp. 1–18. DOI: 10.4204/EPTCS.267.1.

[19] T. M. Pham and Y. Bertot, “A combination of a dynamic geo metry
software with a proof assistant for interactive formal proofs,”

Electronic Notes in Theoretical Computer Science,vol.285,pp.43–55,
2012. DOI: 10.1016/j.entcs.2012.06.005.

[20] T. Nipkow, “Teaching semantics with a proof assistant: No more LSD
trip proofs,” in Verification, Model Checking, and Abstract

Interpretation. VMCAI 2012, V. Kuncak and A. Rybalchenko, Eds., ser.
Lecture Notes in Computer Science, vol. 7148, 2012, pp. 24–38. DOI :
10.1007/978-3-642-27940-9_3.

[21] J.-C. Filliâtre and A. Paskevich, “Why3 — where programs meet

provers,” in Proceedings of the 22nd European Symposium on
Programming, M. Felleisen and P. Gardner, Eds., ser. Lecture Notes
in Computer Science, vol. 7792, Springer, Mar. 2013, pp. 1 25– 128 .

[Online]. Available: https://hal.inria.fr/hal-00789533.

