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Abstract—This article describes our experience of 

introducing undergraduate students to formal methods using 
the interactive proof assistant Rocq. The goals of the course 

include sharpening students' skills in writing strict 

mathematical proofs both on paper and on a computer, as well 

as demonstrating practical applications of mathematical logic. 

At the end of the course students do group projects where they 
specify and verify an algorithm, such as finding maximum in a 

one- or two-dimensional array, checking if a number is prime 

or computing an integer root of an equation. 

We tried to minimize nontrivial aspects of Rocq and use the 

most of the material already familiar to students. This 

comparative simplicity, which is appropriate for the first 
introduction to formal methods, distinguishes the course from 

its analogs. 

 
Keywords—Interactive proof assistant Rocq, Formal 

methods, Program verification, Education. 

 

I. INTRODUCTION 

This article describes the experience of introducing 

students to formal methods using the interactive proof 

assistant Rocq. The course is called “Foundations of 

Computer Science” [1]; it is taught to fourth year 

undergraduate students majoring in mathematics in the 

Institute of Information Technologies, Mathematics and 

Mechanics in Lobachevsky State University of Nizhny 

Novgorod, Russia. 

Formal methods are mathematically based languages, 

techniques and tools for specifying, developing and 

verifying software and hardware systems [2]. These tools 

become indispensable as both system complexity and the 

price of error grow. That's why formal methods are 

extensively used in such areas as aerospace industry [3] and 

design of processors [4] and network protocols [5]. Many 

tasks, such as program verification, are already achievable at 

least in theory, though in pra ctice the development of fully 

verified software is often not feasible due to high cost. 

Nevertheless, there is hope that rapid development will 

bring the cost of verification down and formal methods will 

gain wide acceptance. One evidence of that is several 

hundred conferences and workshops related to formal 

methods that take place every year. 

Some of the most useful tools employed in formal 

methods are automated or fully automatic proof assistants, 

or theorem provers [6]. These programs can be used to 

formalize both proofs in pure mathematics and proofs 

related to algorithm correctness. First theorem provers 
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appeared in the 1950s, and the 1980s witnessed the 

beginning of the development of such systems as Rocq, 

HOL Light and ACL2, which are still widely used today. 

The course described here is not one of the core 

disciplines in the mathematics curriculum. There are weekly 

labs that take one and a half hours each. The course covers 

different topics during the two years that it is taught. Two 

semesters of the third year support the numerical methods 

course, while the fall and spring semesters of the last year 

are devoted to studying functional programming and 

computer-assisted theorem proving, respectively. The last 

part of the spring semester is allotted to f inishing bachelor's 

thesis, so this semester lasts for twelve weeks instead of the 

usual sixteen. This makes it difficult to thoroughly introduce 

formal methods or even teach working with one proof 

assistant. Therefore, the course covers only elementary 

program specification and verification. This is its main 

difference from other courses, which cover mathematical 

foundations and subtleties of working with Rocq to a greater 

degree. A comparison with similar courses is found in 

Sect. VI. 

The greater part of the course is spent learning how to use 

Rocq, and the last three or four weeks are devoted to group 

projects. We avoid teaching complex inductive types and 

predicates and only cover introduction to type theory, which  

is the foundation of Rocq. 

Having studied mathematical logic during the previous 

semester, students are familiar with first-order formulas, free 

and bound variables and either natural deduction or 

Gentzen's sequent calculus. If time allows, the logic course 

also covers lambda calculus, which underlies type theory 

used in Rocq. Lambda calculus is also studied in the 

functional programming course that runs parallel to the logic 

course. These things are helpful, but not indispensable to 

studying proof assistants. 

Computer-aided software verification, in turn, provides a 

much-desired real-world application of mathematical logic. 

Students get a chance not just to write a program, which 

they have done numerous times in other courses, but to 

prove its correctness as well. Of course, algorithms offered 

in course projects are very simple, and it may look like 

efforts required to explain seemingly obvious details to a 

computer are not worth it. Some of these difficulties indeed 

come from the annoying failure of a computer to understand  

things that are obvious to people; however, others point to 

errors in the algorithm or its specification. Therefore the 

level of precision required in this course exceeds the 

corresponding level in other areas, such as epsilon-delta 

proofs in calculus. In our opinion, writing such proofs is 

beneficial to mathematics majors because it demonstrates 

that no proof step has to rely on intuition; rather, every step 

is described by precise inference rules. 
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The contributions of the article are as follows. The course 

is described in sufficient detail for anyone familiar with 

Rocq to implement a similar one. We show that discussing 

type theory and more advanced aspects of Rocq can be kep t  

to a minimum, and thus it is possible to introduce students to 

a modern proof assistant even during a n abbreviated 

semester. Finally, we discuss how writing computer-assisted 

proofs develops skills that are different from those in other 

mathematical disciplines. 

The rest of the article has the following structure. The 

next section introduces the Rocq proof assistant. Sect. III 

describes topics studied during the main part of the course. 

Sect. IV lists examples of projects. Sect. V discusses proof-

writing skills. Sect. VI compares this course to similar ones. 

Finally, Sect. VII sums up and describes future work. 

II.  INTRODUCTION TO ROCQ THEOREM PROVER 

Interactive theorem prover Coq [7]–[8] has been 

developed in the French research institute INRIA since the 

1980s. In 2025 it was renamed into Rocq. The development 

is ongoing, and new versions come out approximately every 

five months. Rocq is one of the most advanced and widely 

used computer proof systems both in academia and in the 

industry. This is why working with Rocq is an excellent way 

of introducing students to formal methods. 

Rocq was used to prove a number of nontrivial results 

both in pure mathematics and in computer science. In the 

end of the 1990s Rocq was used to formalize a constructive 

proof of the fundamental theorem of algebra. This 

theoretically allowed computing a root of every non-

constant polynomial with required precision. In practice the 

program extracted from the proof was too slow. Therefore a 

library of constructive algebra and analysis was developed 

that used a more efficient representation of real numbers. 

The work in this direction is ongoing [9]. 

In 2005 a complete proof of the four color theorem was 

formalized, including the correctness of the program that 

verified a large number of special cases [10]. In the same 

year Rocq was used to prove the first Gödel's 

incompleteness theorem [11]. In 2012 the Feit-Thompson 

Odd Order Theorem was proved in Rocq [12] (the original 

proof published in 1963 contained 255 pages). An example 

of an important project in computer science is CompCert—a 

compiler for a significant fragment of the C programming 

language whose specification, implementation and 

verification were all done in Rocq [13]. The complexity of 

the correctness proof for a program of such scale defies 

imagination. 

Rocq is based on type theory called the Calculus of 

Inductive Constructions (CIC). It is an expressive variant of 

typed lambda calculus, which, due to Curry-Howard 

correspondence, serves both as a functional programming 

language and as a logical calculus. The main judgment in 

type theory is Γ⊢t: A, which says that in context Γ that 

contains types of free variables term t has type A. This 

judgment can also be read as saying that t is a  proof of 

theorem A. 

CIC uses dependent types that can contain terms. The 

most important inference rules are the following. 

  (1) 

Here fun x: A ⇒ t denotes a function with argument x of 

type A and body t, and B[t2/x] denotes the result of 

substituting term t2 for variable x in type B. These rules 

show that ∀x: A, B is a  dependent product, or the type of 

functions whose range depends on the value of their 

argument x. Simultaneously ∀x: A, B is a  proposition saying 

that B is true for every x of type A. 

Implication A → B, which is also a type of simple 

functions from A to B, is a  contraction of ∀x: A, B when x 

does not occur freely in B. Other logical connectives—

conjunction, disjunction and existential quantifier—are 

defined using inductive types. However, a  Rocq user does 

not need to know this since the Rocq library contains the 

usual introduction and elimination rules for these 

connectives. 

Another important inference rule of Rocq is the 

conversion rule, which makes sense due to the presence of 

dependent types. 

 
Here β, ι, δ and ζ are different types of reductions on terms, 

of which the best known is β-reduction. 

(fun x : A ⇒ t1)t2 →β t1[t2/x] 

Notation A =βιδζ B means that type B can be obtained from  A  

using a chain of reduction and reverse reductions. 

Reductions define the operational semantics of Rocq, and 

the equivalence relation that they generate is sometimes 

called equality by definition. Thus the rule above says that  a  

proof of a proposition is simultaneously a proof of another 

proposition that is obtained from the first one by replacing 

some terms with others that are equal by definition. For 

example, a  constant eq_refl has the type, or, equivalently, 

is a  proof of reflexivity of equality ∀A : Type, ∀x : A, x = x, 

so eq_refl 4 is a proof of 4 = 4.1 However, term 2 + 2 

reduces to 4, so eq_refl 4 is also a proof of 2 + 2 = 4. The 

distinction between definitional equality and the so-called 

Leibniz equality, which is most commonly used in 

mathematics, is described by the Poincaré principle, which 

postulates the difference between a proof and a verification :  

the latter is considered trivial and is not considered a part of 

a proof. The conversion rule allows Rocq, unlike many other 

proof assistants, using proofs by reflection, when a 

procedure for deciding a certain problem is both written and 

verified in Rocq. 

Inference rules of CIC are relatively few and well studied 

in mathematics. Their implementation is collected in a so-

called kernel. Other parts of the proof assistant can try to 

build a proof, but only the kernel checks if the proof is 

correct. Having a relatively small kernel that can be checked  

independently is called the de Bruijn principle. It increases 

trust in the system. 

Rocq has natural syntax that makes it easier to use it in 

education. For example, here is the definition of prime 

 

1We omitted the implicit argument nat of eq_refl which is  u sually 

not printed by Rocq. 
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numbers. 

Definition prime (n : nat) : Prop := 
  1 < n /\ 
  forall d, 1 < d -> d < n -> ~(d | n). 

Rocq also has rich facilities for defining new notations 

and can use Unicode symbols, which allows, for example, 

writing ∀ n instead of forall n. 

 

Fig. 1. Integrated development environment RocqIDE 

 

Rocq is freely distributed for Linux, Windows and 

macOS. It includes an integrated environment RocqIDE for 

writing proofs. The program window, shown in Fig. 1, 

consists of three parts. The left one contains a file with 

definitions, theorems and proofs. A proof consists of so-

called tactics, which are admissible inference rules from the 

logical standpoint. Rocq checks application of each tactic, 

and when there are no errors, it paints commands that have 

already been executed in green. This area can no longer be 

changed by the user, though it is possible to undo several 

steps or start the proof from the beginning. 

The top right part of the window shows the current goal, 

which is a judgment of the form Γ⊢t: A. The context Γ, 

which contains variables and assumptions used in the proof , 

is written vertically. Instead of the symbol ⊢ there is a 

horizontal line. Below it is the statement currently being 

proved. At each moment there can be several goals, and the 

user works with one of them. Finally, the bottom right 

corner shows messages, such as results of searching lemmas 

in the standard library or error messages. 

The user starts a proof from the theorem statement and 

uses tactics to convert it to other goals. Thus, a proof is 

usually built bottom up, i.e., from the final proposition to 

axioms. However, there are tactics that produce corollaries 

of existing theorems and assumptions. 

III. COVERED TOPICS 

As was said in the introduction, this course is abbreviated 

and lasts only twelve weeks. There are no dedicated 

lectures, only labs in a computer class. In the first part of the 

class the instructor explains the new material, and in the 

second part students work on assignments. Unsolved 

exercises are left as homework. Below are topic for each 

week's classes. 

Week 1. Basic syntax. Propositional logic. Connection 

between Rocq tactics and inference rules from the 

mathematical logic course. Focusing proofs using special 

symbols *, + and - to indicate where the proof of each 

subgoal starts and ends. Simple automatic tactics trivial, 

auto, easy). Using the integrated environment. 

Examples of statements that students should be able to 

prove. 

Theorem disj_premise : 
  (A \/ B -> C) -> (A -> C) /\ (B -> C). 
Theorem deMorgan : 
  (~A \/ ~B) -> ~(A /\ B). 

Week 2. Predicate logic. Tactics working with quantifiers 

and their comparison with standard logical inference rules. 

The simplest ; for joining tactics. 

Examples of statements. 

Theorem t1 : (forall x : T, P x) \/ 
  (forall x : T, Q x) → 
    (forall x : T, P x \/ Q x). 

Theorem t2 : 
  ((exists x, P x) -> forall x, Q x) → 
    forall x, P x -> Q x. 

Week 3. Leibniz, or provable, equality. Rewriting tactics. 

Peano arithmetic. Defining functions using recursion; 

definitional equality that they generate. Proof by induction 

on natural numbers. 

Examples of statements: associativity, commutativity of 

addition and multiplication; distributivity of multiplication 

with respect to addition. 

Week 4. Automatic tactics for proving statements in 

Presburger arithmetic and polynomial equalities (lia and 

ring). Searching the standard library for theorems. 

Commands for printing information about terms. Unification 

of a goal and a statement done by the apply tactic. 

Examples of statements. 

Theorem sum_progression : 
  forall n, 2 * sum n = n * (n + 1). 
Theorem sum_cubes : 
  forall n, sumCubes n = (sum n)^2. 

Week 5. Introduction to Curry-Howard correspondence 

between terms and proofs and between types and theorems. 

Simply typed lambda calculus. Dependent types. 

Explanation why applying a lemma to an argument 

corresponds to universal quantifier elimination inference 

rule (1). Proving arithmetic facts. 

Example of statements. 

Theorem lt_S_r : 
  forall m n, m < S n -> m = n \/ m < n. 

Here S denotes the successor function that adds 1 to its 

argument. It is used in Peano axioms. 

Week 6. Difference between types Prop and bool. Using 

predicates that return bool in programs. Proofs by cases on 

the the truth value of bool predicates using reflection of 

sort Prop in type bool [14, vol. 1]. Representing an array 

as a function on natural numbers and a natural number: 

array's length. Defining recursive functions on arrays, such 

as finding array's maximum. Full specification of such 
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functions. 

Examples of statements. 

Theorem arrayMaxSpec1 : 
  forall n i, 
    i <= n -> array i <= arrayMax n. 

Theorem arrayMaxSpec2 : 
  forall n, exists i, 
    i <= n /\ array i = arrayMax n. 

Week 7. Finishing verification of the maximum function 

on arrays. Dependent sums and existential quantification. 

Program extraction from constructive proofs. 

Week 8. Induction with several bases and parameters. 

Strong induction. Simplifying recursive functions tactics 

cbn and simpl). Additional tactics (discriminate, 

simplify_eq, contradict, intuition). Choosing 

group projects. 

Weeks 9–12. Working on projects and presenting them to 

the class or the instructor. 

IV. COURSE PROJECTS 

During the last three or four weeks of the course students 

work on projects in groups of two or three. In each case the 

task is to write an algorithm and prove that it conforms to it s 

specification. Unfortunately, there is not enough time to 

listen to students' presentations, even though creating a 

presentation and addressing the audience would be a 

valuable experience. 

Project 1. Check if an array is sorted. One has to write a 

definition and prove a theorem as follows. 

Fixpoint arraySorted (n: nat): bool := … 

Definition sorted (n : nat) : Prop :=  
  forall i1 i2, i1 < i2 -> i2 < n → 
    array i1 <= array i2. 

Theorem arraySortedSpec: 
  forall n, 
    sorted n <-> arraySorted n = true. 

Function arraySorted checks if an array of length n is 

sorted in non-decreasing order (the array itself is a  

parameter), and predicate sorted is its specification. The 

theorem relates the two concepts. 

Project 2. For given  f : nat → nat and n : nat 

determine if the restriction of f on {0, ..., n} is an 

injection. 

Project 3.  For given  f : nat → nat and m n : nat 

determine if {0, ..., n} ⊆ {f 0, ..., f m}. In 

other words, if f maps {0, ..., m} to {0, ..., n}, 

one must determine if f is a  surjection. 

Project 4. Determine if a  number occurs in a 2D array 

represented by a function of type nat -> nat -> nat 

together with the numbers of rows and columns. 

Project 5. Find the greatest divisor (not necessarily prime) 

of a number smaller than the number itself. 

Project 6. Find the greatest common divisor of numbers m 

and n using the Euclidean algorithms or the search from min 
m n to 1. 

Project 7. Check if a  natural number is prime. 

Project 8. Check if an array is a palindrome, i.e., ∀ i j, 

i + j = n → a i = a j holds. 

Project 9. Prove the equivalence of two function 

definitions that use tail and nontail recursion. One can 

consider addition, multiplication, factorial and Fibonacci 

numbers. 

In order to prove the equivalence of the highly inefficient 

but standard function fib and the efficient but less obvious 

function fibIter defined as follows: 

Fixpoint fib (n : nat) := 
match n with 
| 0 => 0 
| S 0 => 1 
| S (S p as q) => fib q + fib p 
end. 
 
Fixpoint fibIter (n : nat) (a : nat) (b : 
nat) := 
match n with 
| 0 => a 
| S p => fibIter p b (a+b) 
end. 

one has to come up with a nontrivial invariant, e.g., 

Lemma fib_eq_iter : 
  forall a n, fib (n+a) = 
    fibIter n (fib a) (fib (a+1)). 

Then the desired result 

Theorem fib_eq : 
  forall n, fibIter n 0 1 = fib n. 

easily follows. 

Project 10. Find an integer root of an equation f x = y 

where f is an unbounded function and f 0 <= y. 

Project 11. Implement addition of two numbers 

represented by function of type  nat -> nat and prove its 

correctness. 

Project 12. Find the value of a polynomial at a  point 

using Horner's method and prove that it is equal to the value 

computed in the usual way. 

Project 13. Prove the following theorem. 

Variables f g : nat -> nat. 
Hypothesis notSurjection : 
  forall n, g n <> 0. 
Theorem fgf : exists n, f (g (f n)) <> n. 

This statement has a constructive and a nonconstructive 

proofs. Finding the required n without an unbounded search 

requires some ingenuity. 

Project 14. Prove the pigeonhole principle: if 

f : {0, …, n} → {0, …, n-1}, then there exist i and 

j such that 0 ≤ i < j ≤ n and f(i) = f(j). 

Functions that modify arrays, such as various sorting 

algorithms, are also good candidates for course projects, but 

their proofs are more complicated because one has to show 

that changing one array element does not affect others. 

V.SKILLS DEVELOPED BY WRITING FORMAL PROOFS 

This section describes how working with a proof assistant 

can help mathematics majors develop proof-writing skills. 

Prior to this course students have already covered almost all 

undergraduate curriculum including courses like 

“Differential Geometry and Topology,” “Number Theory,” 

“Mathematical Logic” and “Lie Groups and Algebras,” so 
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the students' ability to comprehend and write complex 

proofs is in no doubt. This course goes in the direction that 

is in some sense opposite to the disciplines mentioned 

above. Indeed, though it covers elementary facts about 

natural numbers and proofs by induction, attempting to 

explain a proof to a computer leads to numerous difficulties 

with statements that are intuitively obvious. The course 

strives to overcome those difficulties by teaching students 

construct highly detailed and rigorous proofs and think 

about proof steps in terms of known inference rules. 

This distinction reminds two ways of studying 

mathematics described by the philosopher and 

mathematician Bertrand Russell in his book “Introduction to  

Mathematical Philosophy” [15]. 

Mathematics is a study which, when we start from 

its most familiar portions, may be pursued in either 

of two opposite directions. The more familiar 

direction is constructive, towards gradually 

increasing complexity: from integers to fractions, real 

numbers, complex numbers; from addition and 

multiplication to differentiation and integration, and 

on to higher mathematics. The other direction, which 

is less familiar, proceeds, by analysing, to greater and 

greater abstractness and logical simplicity… 

We may state the same distinction in another way. 

The most obvious and easy things in mathematics are 

not those that come logically at the beginning; they 

are things that, from the point of view of logical 

deduction, come somewhere in the middle. Just as 

the easiest bodies to see are those that are neither 

very near nor very far, neither very small nor very 

great, so the easiest conceptions to grasp are those 

that are neither very complex nor very simple (using 

“simple” in a logical sense). And as we need two 

sorts of instruments, the telescope and the 

microscope, for the enlargement of our visual 

powers, so we need two sorts of instruments for the 

enlargement of our logical powers, one to take us 

forward to the higher mathematics, the other to take 

us backward to the logical foundations of the things 

that we are inclined to take for granted in 

mathematics. 

Here are some examples of complications faced by 

students during proofs of seemingly obvious facts. 

Greatest Divisor. Project 5 from Sect. IV asks to write a 

function f(n) that computes the greatest divisor of n smaller 

than n itself. One can define an auxiliary function g(n, k) by 

recursion on k that returns the greatest divisor of n smaller 

than k; then f(n) = g(n, n). Specification of g says, in 

particular, 

 ∀n∀k∀j (g(n, k) < j → j < k → ¬(j | n)) (2) 

where j | n means that j divides n. This statement is proved 

by induction on k. In the induction step one has to show 

that (2) and g(n, S(k)) < j < S(k) imply ¬(j | n) (to remind, S 

is the successor function). If k divides n, then g(n, S(k)) = k 

and k < j < S(k) is impossible on natural numbers. Otherwise 

by definition g(n, S(k)) = g(n, k), and one has to show that 

g(n, k) < j < S(k) implies ¬(j | n). This claim is very similar 

to (2), but if one tries to derive ¬(j | n) using (2) at this point, 

one has to prove its premise j < k from j < S(k), which is 

impossible. Of course, ¬(k | n) holds by assumption, and 

¬(j | n) for j < k follows from the induction hypothesis. 

A large part of difficulties faced by students are similar. 

Without a clear plan proof attempts ca n degenerate into a 

syntactic game where a students tries to apply all available 

theorems and assumptions. This is why it is important to 

have a detailed paper proof, which is then consistently being 

implemented in Rocq. At each step the student must be 

aware of the state of the formalization process. 

Induction with Initial Value Different from Zero . When 

dealing with prime numbers one often has to prove 

statements like ∀n (1 < n → P(n)) from P(2) and 

 ∀n(1 < n → P(n) → P(S(n ))). (3) 

This has to be done using regular mathematical induction. 

The base is 1 < 0 → P(0), which is trivially true. The 

induction step amounts to showing that ∀n (1 < n → P(n)) 

implies ∀n (1 < S(n) → P(S(n))). 

An attempt to use (3) to prove P(S(n)) leads to the need to  

prove 1 < n from 1 < S(n), i.e., 0 < n, which is impossible. 

The right approach is to consider cases n = 0, n = 1 and 

1 < n. In the first case the premise 1 < S(n) is false, in the 

second one P(S(n)) is P(2), which holds by assumption, and 

in the last case P(S(n)) follows from the induction 

hypothesis and (3). 

A math major has to know that different types of 

induction on natural numbers, including strong induction, 

are derived from the standard induction principle. 

Multiparameter Induction. Often the statement proved for 

all n by induction has the form ∀k P(n, k). It is a  good idea 

to keep the quantifier on k in the induction hypothesis 

instead of fixing k in the whole proof. 

As an example, consider decidability of equality on 

natural numbers, which can be implemented a s follows. 

Fixpoint eqb (x y : nat) : bool := 
match x, y with 
| 0, 0 ⇒ true 
| 0, S _ ⇒ false 
| S _, 0 ⇒ false 
| S x1, S y1 ⇒ eqb x1 y1 
end. 

One has to prove ∀x∀y eqb(x, y) = true ↔ x = y). The 

proof proceeds by induction on x and considering cases 

y = 0 and y = S(z) for some z (the induction hypothesis on y 

is not needed). 

The induction predicate on x should be ∀y (eqb(x, 

y) = true ↔ x = y) and not just eqb(x, y) = true ↔ x = y 

because the claim for S(x) and S(y) are derived from the 

similar claim for x and y and not for x and S(y). This is an 

important detail that is easy to miss in paper proofs. 

“Without Loss of Generality.” Let P(x, y) be a symmetric 

relation on natural numbers. It is clear that to show P(x, y) 

for all x and y it is sufficient to consider the case x ≤ y. 

Usually this is conveyed by the phrase, “Without loss of 

generality, assume that x ≤ y.” However, representing this 

phrase as a precise inference rule is a nice exercise. In this 

case P(x, y) is derived from assumptions ∀u∀v (u ≤ v → 

P(u, v)) → P(x, y) and x ≤ y → P(x, y) (see the tactic wlog 

in the description of SSReflect in [8]). 

Pigeonhole Principle. This principle, whose statement is 

given in project 14, is a  striking example of a proposition 
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whose proof contains details one does not think about at 

first. In fact, a  formal proof contains a program that, given  a  

function f with the given domain and codomain, returns 

distinct numbers i and j such that f(i) = f(j). And yet at first 

glance this program seems less obvious than the proof that 

contains it. 

The proof proceeds by induction on n. In the induction 

step one has to show that f:{0, …, n+1} → {0, …, n} is not 

injective. If there exits an i ≤ n such that f(i) = f(n+1), then 

the claim is proved. Suppose f(n+1) is different from all 

previous values. If f(n+1) = n, then the induction hypothesis 

applies to f restricted to {0, …, n}. If f(n+1) < n, consider a 

function g defined on {0, …, n} where g(i) = f(n+1) if 

f(i) = n and g(i) = f(i) otherwise. It is easy to show that if g is 

not injective, then neither is f. Then the induction hypothesis 

applies to g. 

Formalizing proof of the pigeonhole principle is more 

complicated than other projects, but it is achievable for a 

conscientious student. 

VI. COMPARISON WITH SIMILAR COURSES 

Theorem provers have been used in education over the 

last twenty years. One of the most interesting projects is the 

electronic textbook Software Foundations [14] by 

B.C. Pierce et al. This is an introduction to formal methods 

used for producing reliable software. This book, which 

currently consists of six volumes, covers a multitude of 

topics: propositional and predicate logic, definitions and 

proofs by induction, Hoare logic, simply typed lambda 

calculus, functional programming, etc. A remarkable feature 

of the book is that all definitions, theorem and proofs are 

implemented in Rocq. In fact, the book is a collection of 

Rocq files where regular text is written in comments and the 

reader is invited to replay provided proofs step by step and 

to write their own. The main goal is not just to make readers 

proficient in Rocq, but to provide definitions and proofs 

using a new level of rigor and to demonstrate that proof 

assistants can be used in education along with traditional 

textbooks. 

The paper [16] describes a system ProofWeb that 

underlies several online courses using Rocq. Students don't 

need to install Rocq on their machines; they work with the 

system remotely using the web interface. Each student has 

an account that stores passed tests, graded exercises, etc. 

Each course has a required supply of notes and exercises. 

The ProofWeb system has been used for teaching both 

master's level courses in verification and type theory and 

introductory logic courses. The authors created Rocq tactics 

that closely resemble the standard inference rules of natural 

deduction. ProofWeb can also show constructed derivations 

as trees, the way they are usually presented in logic courses. 

An interesting Rocq-based course in the National 

University of Singapore is described in [17]. On the one 

hand, it is geared toward undergraduate students; on the 

other, it covers a large number of topics: propositional, 

predicate, modal and Hoare logics. Also, Rocq is used as a 

metalanguage for studying various logics as objective 

languages. This is an interesting approach, but it requires 

more than one lab a week as in our course. 

The article [18] describes an attempt to teach students 

writing proofs beginning with fully formal ones and 

gradually moving towards textbook-style proofs. 

A curious project is described in [19]. It combined a 

popular dynamic geometry software GeoGebra and Rocq. 

Interface with Rocq is implemented as a window inside 

GeoGebra. A user can draw a configuration of points and 

lines and form a hypothesis saying, for example, that two 

segments have equal lengths. The user can then 

experimentally confirm the hypothesis by moving free 

vertices and observing whether the statement remains true. 

Then the configuration can be transferred from GeoGebra t o  

Rocq, and the user can write a formal proof of the 

hypothesis using geometric theorems from the library. 

Other theorem provers are also used in education. For 

example, a  project using the Isabelle proof assistant for 

teaching programming language semantics is described 

in [20]. 

VII. CONCLUSION AND FUTURE WORK 

This article describes our experience introducing 

mathematics majors to formal methods using the interact ive 

proof assistant Rocq. We have shown how this gives a fresh 

look on proofs and helps develop a different set of skills 

than those cultivated by other math disciplines. 

The experience shows that it is possible to teach the 

basics of working with a state-of-the-art proof assistant 

despite the course's limited length. It helps that 

mathematical logic is studied during the previous semester, 

so it is possible to leverage students' familiarity with 

concepts like the syntax of first-order formulas and natural 

deduction. Our course minimizes nontrivial aspects of Rocq, 

such as complex inductive types and predicates. Of course, 

inductive predicates such as ≤ on natural numbers are used 

extensively, but one works with them using theorems from 

the standard library and automatic tactics rather than their 

inductive definitions. Of all numerical types only natural 

numbers are used. Arrays are modeled by functions on 

natural numbers. The Curry-Howard correspondence, which 

is the foundation of Rocq, can be described as time permits. 

Teaching this course for seven years has shown that 

students are usually able to prove at least a  partial 

specification of an algorithm as a final project. Still, despite 

the fact that technically these proofs are quite simpler than 

those, say, from bachelor's theses, many students experience 

difficulties not just with writing proofs in Rocq, but with 

constructing detailed proofs on paper as well. 

We plan to further develop the course by creating slides 

and accompanying course notes. They may allow 

condensing the presentation and using the freed time to 

describe simple inductive types, such as lists, and their 

corresponding induction principles. Another possible 

direction is studying not interactive but fully automatic 

systems for proving program correctness. For this purpose 

one can use the Why3 tool [21], which is based on Hoare 

logic and the calculus of weakest preconditions. Why3 can 

work with a large number of automatic provers (most of 

which work with first-order logic, unlike Rocq) and is also 

widely used both in academia and in the industry. 
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