
International Journal of Open Information Technologies ISSN: 2307-8162 vol. 3, no. 8, 2015

 48

Abstract—In this paper, we would like to discuss data stream

processing in the big data area. Our goal is to provide a quick

introduction and survey of the technical solutions for big data

streams processing. In this survey, we target Machine to

Machine communications, sensors fusion in Internet of Things

as well as time series data processing. We discuss the basic

elements behind data streams processing, the existing technical

solutions for their implementations as well some prospect

system architectures.

Keywords—streams, Spark, time series, sensors.

I. INTRODUCTION

This paper continues our series of papers devoted to

Machine to Machine (M2M) [1] and Internet of Things

processing (IoT) [2].

A sensor network (as a typical form in IoT applications)

consists of small computational devices that are able to

communicate over wireless connection channels [3]. Each of

these computational devices is equipped with sensing,

processing and communication facilities. Actually, the

sensor networks will form a new world wide web that can

read the physical world in real time. They are generating

data streams that need to be processed in real time for a wide

range of applications in the various areas.

Various data streams could have own features. For

example, the data stream from the financial market describes

the whole data. In the same time, the data stream for sensors

depends on sampling (e.g., we can get new data every 5

minutes) and so, presents a sample of the entire population.

Sometimes, data streams could be noisy. Spatial and

temporal attributes could play an important role in data

streams processing. In many cases (e.g., in sensor networks)

we have to pay attention the limited resources (e.g., space

and energy) for data streams processing. Real-time data

streams processing could add own complexity too.

We can highlight two major tasks for data stream

processing. At the first hand, it is processing queries for data

streams [4]. Event processing [5] for data streams falls into

this category. And the second big category is data mining.

We can mention here clustering [6,7], classification and

prediction [8,9], time series [10] and change detection [11],

frequent pattern [12] and outlier detection [13]. Data

mining for stream processing is, probably, the most actively

growing direction.

Of course, the above-mentioned tasks require

technological (IT) support. Software tools for big data

stream processing [14] are a subject of this paper.

D.Namiot is with the Lomonosov Moscow State University (e-mail:

dnamiot@gmail.com).

The rest of this paper is organized as follows. In Section

II, we discuss the basics of stream processing. In Section III,

we present a survey of modern approaches for big data

stream processing. In Section IV, we discuss lambda

architecture.

II. STREAM PROCESSING

In a formal way, a data stream is any ordered pair (S,T)

where:

• S is a sequence of tuples and

• T is a sequence of positive real time intervals.

So, it defines a data stream as a sequence of data objects.

The sequence in a data stream is potentially unbounded. It

means that data streams may be continuously generated at

any rate. Indeed, many sources may produce data

continuously. Examples include a machine to machine

communications (M2M), Internet of Things (IoT) objects,

sensor networks, tags (beacons), etc. It is very important

also, that an ordered sequence of instances in data streams

can be read only once or a small number of times. This

reading process very often should use the limited computing

and storage capabilities (it is especially true for the modern

big data streams). In the data stream, each data object can

be described by a multidimensional attribute vector within a

continuous, categorical, or mixed attribute space [15]. There

are some typical characteristics of data streams:

• Continuous arrival of data objects

• Disordered arrival of data objects

• Potentially unbounded size of a stream

Data streams can be generated in various scenarios,

including a network of sensor nodes, a stock market or a

network monitoring system and so on.

There are several important queries to be considered [17]:

- Aggregate Queries. Aggregate Queries is an important

class of queries in sensor systems, including MIN, COUNT

and AVG operators.

- Join Queries. An example of join queries is “Return the

objects that were detected in both regions R1 and R2”. To

evaluate the query, stream readings from the sensors in

regions R1 and R2 should be joined first before we can

determine whether an object was detected in the two

designated regions. Join queries are useful in many

applications, such as monitoring, where multiple devices

(e.g., sensors) provide measurements data.

- Continuous Queries. To monitor designated changes in

data are typically required to answer queries in a continuous

manner. For example, when the query constraints are

satisfied, the designated action could be triggered.

On Big Data Stream Processing

Dmitry Namiot

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 3, no. 8, 2015

 49

Data stream mining can extract useful rules/information

from data streams. The following lists some typical tasks for

stream mining:

- Clustering. Clustering is the task of grouping a set of

objects in such a way that objects in the same group (called a

cluster) are more similar to each other than to those in other

groups (clusters). Clustering techniques for data streams

typically continuously cluster objects on memory

constrained devices with some time limitations.

- Classification. Classification uses prior knowledge to

guide the partitioning process to construct a set of classifiers

to represent the possible distribution of patterns. Basically,

compared with clustering, classification is a supervised

learning process whereas clustering is an unsupervised

learning process. More formally, a typical classification

algorithm can be defined as follows [18]: given a predefined

classifier and two sets of data, labeled data and unlabeled

data, the labeled data is used to train the classifier and the

unlabeled data can then be classified by the trained

classifier.

- Frequent Items Mining. Frequent items mining is to find

sets of items or values that co-occur frequently, or in other

words, to find co-occurrence relationships in a data set

where a set of items appears together in some specified

context.

- Outlier and Anomaly Detection. In outlier and anomaly

detection, the main task is to find data points that are most

different from the remaining points in a given data set. Most

existing outlier detection algorithms are based on the

distance between every pair of points. The points that are

most distant from all other points will be marked as outliers.

A stream processing solution has to solve different

challenges [19]:

• Processing massive amounts of streaming events

(filter, aggregate, rule, automate, predict, act,

monitor, alert)

• Real-time responsiveness to changing market

conditions

• Performance and scalability as data volumes

increase in size and complexity

• Rapid integration with existing infrastructure and

data sources: Input (e.g. market data, user inputs,

files, history data from a DWH) and output (e.g.

trades, email alerts, dashboards, automated

reactions)

• Fast time-to-market for application development

and deployment due to quickly changing

landscape and requirements

• Developer productivity throughout all stages of

the application development lifecycle by offering

good tool support and agile development

• Analytics: Live data discovery and monitoring,

continuous query processing, automated alerts

and reactions

• Community (component / connector exchange,

education / discussion, training / certification)

• End-user ad-hoc continuous query access

• Alerting

• Push-based visualization

III. BIG DATA STREAMS

In this section, we discuss some technological solutions for

data streams processing.

Apache Storm is a distributed real-time computation system

for processing large volumes of high-velocity data [20]. Is a

distributed real-time computation system for processing fast,

large streams of data. Storm is an architecture based on

master-workers paradigm. So a Storm cluster mainly

consists of a master and worker nodes, with coordination

done by Zookeeper.

Spark Streaming [21] is an extension of the core Spark API

[22] that enables scalable, high-throughput, fault-tolerant

stream processing of live data streams. Data can be ingested

from many sources like Kafka, Flume, Twitter, ZeroMQ,

Kinesis, or TCP sockets, and can be processed using

complex algorithms expressed with high-level functions like

map, reduce, join and window (Figure 1).

Fig. 1 Spark Streaming

Finally, processed data can be pushed out to files systems,

databases, and live dashboards. In fact, you can apply

Spark’s machine learning and graph processing algorithms

on data streams (Figure 2).

Fig. 2 Spark processing

Apache Samza [23] is a distributed stream processing

framework. It uses Apache Kafka for messaging, and

Apache Hadoop YARN to provide fault tolerance, processor

isolation, security, and resource management (Figure 3).

Fig. 3. Apache Samza

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 3, no. 8, 2015

 50

Apache Flume [24] is a distributed, reliable, and available

service for efficiently collecting, aggregating, and moving

large amounts of log data. It has a simple and flexible

architecture based on streaming data flows. It is robust and

fault tolerant with tunable reliability mechanisms and many

failovers and recovery mechanisms. It uses a simple

extensible data model that supports online analytic

applications (Figure 4).

Fig. 4. Apache Flume

Apache Kafka itself is often used as a kernel for data stream

architecture. Originally, Apache Kafka is publish-subscribe

messaging rethought as a distributed commit log [25].

Apache Kafka is a distributed system designed for streams.

It is built to be fault-tolerant, high-throughput, horizontally

scalable, and allows geographically distributing data streams

and processing. Figure 5 illustrates stream-centric

architecture in Linkedin [26]

Fig. 5 Stream-centric architecture on Apache Kafka [26]

Amazon Kinesis [27] is a fully managed, cloud-based

service for real-time data processing over large, distributed

data streams. Amazon Kinesis can continuously capture and

store terabytes of data per hour from hundreds of thousands

of sources such as website clickstreams, financial

transactions, social media feeds, IT logs, and location-

tracking events.

IBM InfoSphere Streams [28] is an advanced analytic

platform that allows user-developed applications to quickly

ingest, analyze and correlate information as it arrives from

thousands of real-time sources. The solution can handle very

high data throughput rates, up to millions of events or

messages per second (Figure 6).

Fig. 6 IBM InfoSphere Streams

As per IBM’s benchmark, this solution outperforms Apache

Storm [29].

The TIBCO StreamBase® Complex Event Processing

(CEP) platform is a high-performance system for rapidly

building applications that analyze and act on real-time

streaming data [30].

IV. LAMBDA ARCHITECTURE

The Lambda Architecture is an approach to building stream

processing applications on top of MapReduce and Storm or

similar systems (Figure 7).

The way this works is that an immutable sequence of records

is captured and fed into a batch system and a stream

processing system in parallel. Developers implement

business transformation logic twice, once in the batch system

and once in the stream processing system. It is possible to

combine the results from both systems at query time to

produce a complete answer [31].

Fig. 7. Lambda architecture [32]

The Lambda Architecture is aimed at applications built

around complex asynchronous transformations that need to

run with low latency. The problem with batch processing is

the time it takes. In the meantime, data has been arriving and

subsequent processes or services continue to work with old

information. The dedicated real time layer solves this by

taking its copy of the data, processing it quickly and stores it

in a fast store. This store is more complex since it has to be

constantly updated.

But there are disadvantages too. One of the obvious

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 3, no. 8, 2015

 51

remarks is the need for duplicating business rules.

Practically, the developers need to write the same code twice

– for real-time and batch layers. One proposed approach to

fixing this is to have a language or framework that abstracts

over both the real-time and batch framework [33]. The

proposed solution is Summingbird framework [34]. It is a

library that lets you write MapReduce programs that look

like native Scala or Java collection transformations and

execute them on a number of well-known distributed

MapReduce platforms. In other words, the same code could

be executed on both layers in lambda architecture.

V. CONCLUSION

In this short paper, we provide an introduction for stream

processing in a big data area. We are planning to provide a

more deep analysis for the above-mentioned systems in the

upcoming papers. By our opinion, real time data processing

is a key area for IoT and M2M applications.

REFERENCES

[1] Namiot, D., & Sneps-Sneppe, M. (2014). On M2M Software

Platforms. International Journal of Open Information Technologies,

2(8), 29-33.

[2] Namiot, D., & Sneps-Sneppe, M. (2014). On IoT Programming.

International Journal of Open Information Technologies, 2(10), 25-

28.

[3] Gama J., and Gaber MM (Eds), Learning from Data Streams:

Processing Techniques in Sensor Networks, Springer Verlag, 2007

[4] Aggarwal, C. C. (2007). Data streams: models and algorithms (Vol.

31). Springer Science & Business Media.

[5] Cugola, G., & Margara, A. (2012). Processing flows of information:

From data stream to complex event processing. ACM Computing

Surveys (CSUR), 44(3), 15.

[6] Liu, Y. B., Cai, J. R., Yin, J., & Fu, A. W. C. (2008). Clustering text

data streams. Journal of computer science and technology, 23(1),

112-128.

[7] Gama, J. (2010). Clustering from Data Streams. In Encyclopedia of

Machine Learning (pp. 180-183). Springer US.

[8] Aggarwal, C. C., Han, J., Wang, J., & Yu, P. S. (2004, August). On

demand classification of data streams. In Proceedings of the tenth

ACM SIGKDD international conference on Knowledge discovery and

data mining (pp. 503-508). ACM.

[9] Yang, Y., Wu, X., & Zhu, X. (2005, August). Combining proactive

and reactive predictions for data streams. In Proceedings of the

eleventh ACM SIGKDD international conference on Knowledge

discovery in data mining (pp. 710-715). ACM.

[10] Hulten, G., Spencer, L., & Domingos, P. (2001, August). Mining

time-changing data streams. In Proceedings of the seventh ACM

SIGKDD international conference on Knowledge discovery and data

mining (pp. 97-106). ACM.

[11] Kifer, D., Ben-David, S., & Gehrke, J. (2004, August). Detecting

change in data streams. In Proceedings of the Thirtieth international

conference on Very large data bases-Volume 30 (pp. 180-191).

VLDB Endowment.

[12] Giannella, C., Han, J., Pei, J., Yan, X., & Yu, P. S. (2003). Mining

frequent patterns in data streams at multiple time granularities. Next

generation data mining, 212, 191-212.

[13] Subramaniam, S., Palpanas, T., Papadopoulos, D., Kalogeraki, V., &

Gunopulos, D. (2006, September). Online outlier detection in sensor

data using non-parametric models. In Proceedings of the 32nd

international conference on Very large data bases (pp. 187-198).

VLDB Endowment.

[14] Stonebraker, M., Çetintemel, U., & Zdonik, S. (2005). The 8

requirements of real-time stream processing. ACM SIGMOD Record,

34(4), 42-47.

[15] Silva, J. A., Faria, E. R., Barros, R. C., Hruschka, E. R., de Carvalho,

A. C., & Gama, J. (2013). Data stream clustering: A survey. ACM

Computing Surveys (CSUR), 46(1), 13.

[16] Qin, Y., Sheng, Q. Z., Falkner, N. J., Dustdar, S., & Wang, H. (2014).

When Things Matter: A Data-Centric View of the Internet of Things.

arXiv preprint arXiv:1407.2704.

[17] Subramaniam, S., & Gunopulos, D. (2007). A survey of stream

processing problems and techniques in sensor networks. In Data

Streams (pp. 333-352). Springer US.

[18] Wang, F. and Liu, J. 2011. Networked Wireless Sensor Data

Collection: Issues, Challenges, and Approaches. IEEE

Communications Surveys and Tutorials 13, 4, 673–687

[19] Real-Time Stream Processing as Game Changer in a Big Data World

with Hadoop and Data Warehouse

http://www.infoq.com/articles/stream-processing-hadoop Retrieved:

Jul, 2015

[20] Jain, A., & Nalya, A. (2014). Learning Storm. Packt Publ..

[21] Spark Streaming http://spark.apache.org/docs/latest/streaming-

programming-guide.html Retrieved: Jul, 2015

[22] Shoro, A. G., & Soomro, T. R. (2015). Big Data Analysis: Apache

Spark Perspective. Global Journal of Computer Science and

Technology, 15(1).

[23] Apache Samza http://samza.apache.org/ Retrieved: Jul, 2015

[24] Apache Flume http://flume.apache.org/ Retrieved: Jul, 2015

[25] Kafka, A. (2014). A high-throughput, distributed messaging system.

URL: kafka. apache. org as of, 5(1).

[26] Putting Apache Kafka To Use: A Practical Guide to Building a

Stream Data Platform (Part 1) http://www.confluent.io/blog/stream-

data-platform-1/ Retrieved: Jul, 2015

[27] Amazon Kinesis http://aws.amazon.com/kinesis/ Retrieved: Jul, 2015

[28] Ballard, C., Brandt, O., Devaraju, B., Farrell, D., Foster, K., Howard,

C., ... & Uleman, R. (2014). Ibm Infosphere Streams: Accelerating

Deployments with Analytic Accelerators. IBM Redbooks.

[29] Of Streams and Storms https://developer.ibm.com/streamsdev/wp-

content/uploads/sites/15/2014/04/Streams-and-Storm-April-2014-

Final.pdf Retrieved: Jul, 2015

[30] The TIBCO StreamBase Complex Event Processing

http://www.tibco.com/products/event-processing/complex-event-

processing/streambase-complex-event-processing Retrieved: Jul,

2015

[31] Lambda architecture http://lambda-architecture.net/ Retrieved: Jul,

2015

[32] Simplifying the (complex) Lambda architecture

http://voltdb.com/blog/simplifying-complex-lambda-architecture

Retrived: Jul, 2015.

[33] Questioning the Lambda Architecture

http://radar.oreilly.com/2014/07/questioning-the-lambda-

architecture.html Retrieved: Jul, 2015

[34] Boykin, O., Ritchie, S., O'Connell, I., & Lin, J. (2014). Summingbird:

A framework for integrating batch and online mapreduce

computations. Proceedings of the VLDB Endowment, 7(13), 1441-

1451.

