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Abstract — This paper explores the convergence 

properties of the randomized stochastic projected 

gradient-free (RSPGF) algorithm for calibrating the 

ARMA-GARCH model using market option prices. The 
calibration problem is framed as a stochastic 

optimization task within the risk-neutral probability 

measure, addressing the discrepancy between 

theoretical and market-implied option prices. The 

ARMA-GARCH model, combining autoregressive 
moving average and generalized autoregressive 

conditional heteroskedasticity components, captures the 

volatility clustering and dynamics of financial asset 

returns. The proposed RSPGF algorithm integrates 

gradient-free optimization with random smoothing 
techniques to handle the nonlinearity and complexity of 

the model, where analytical gradient computation is 

infeasible. A Monte Carlo method estimates the loss 

function, ensuring unbiased estimates with bounded 

variance under time series stationarity. The paper 
proves a theorem establishing the Lipschitz continuity 

and boundedness properties of the loss function, 

providing theoretical guarantees for the algorithm’s 

convergence to an ε-stationary point at a rate of 

O(1/√N). These findings confirm the algorithm’s 
applicability for robust calibration of ARMA-GARCH 

models, offering practical insights for financial 

modeling and option pricing. 
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I. INTRODUCTION 

In this paper the problem of calibrating the 

parameters of the ARMA-GARCH time series model 

for the returns of the base asset using market option 

quotes is considered [1]. Market option quotes often 

differ from the prices suggested by theoretical models 

[2], [11]. This means that market participants have 

their own view on the possible future dynamics of the 

underlying asset. 

The paper considers the application of the ARMA-

GARCH model – a combination of the ARMA 

model, which is a model of autoregression and 

moving average often used in modeling many 

 
Manuscript received May 26, 2025.  
Petr Arbuzov, Ph.D student at Lomonosov Moscow State 

University (e-mail: arbuzov.parb@gmail.com).  

discrete random processes; and the GARCH model, 

which is a generalized autoregressive conditional 

heteroskedasticity model that allows modeling the 

volatility clustering effect often observed in financial 

markets [9], [10]. 

In the second section of the article, the formulation  

of the problem of calibrating the parameters of the 

ARMA-GARCH model for the returns of the base 

asset in the risk-neutral probability measure is 

presented as a stochastic optimization problem [5]. 

The third section provides an overview of the random 

smoothing method and formulates the randomized 

stochastic projected gradient free algorithm that 

solves the posed stochastic optimization problem. 

In the concluding section of the work, a theorem 

about the properties of the considered loss function is 

proven, a conclusion of which is the convergence of 

the presented algorithm in the calibration of the 

ARMA-GARCH model using market option prices.  

II. PROBLEM STATEMENT 

The ARMA(𝑝 , 𝑞) − GARCH(𝑃, 𝑄) model has the 

form: 

𝑌𝑡̃ = 𝑚𝑡̃ + ϵ𝑡̃ ; (1) 

ϵ𝑡̃ = √ℎ𝑡̃ε𝑡 ,  ε𝑡 ∼ iid(0,1); (2) 

m̃t = ϕ0 + ϕ1𝑌𝑡−1 + ⋯ + ϕ𝑝 𝑌𝑡−𝑝 + θ1ϵ̃𝑡−1

+ ⋯ + θ𝑞 ϵ̃𝑡−𝑞 ; 
(3) 

ℎ𝑡̃ = α0 + α1ℎ̃𝑡−1 + ⋯ + α𝑃 ℎ̃𝑡 −𝑃 + β1ϵ̃𝑡 −1
2

+ ⋯ + β𝑄 ϵ̃𝑡 −𝑄
2 ; 

(4) 

α0 > 0,α1 , … , α𝑃 , β1, … , β𝑄 ≥ 0 (5) 

𝑌0̃ = h̃0 = ϵ̃0 = 0. (6) 

Note that 𝑚𝑡 and ℎ̃𝑡 are also the conditional 

expectation and variance, respectively: 

𝑚𝑡 = 𝔼[ 𝑌𝑡 ∣∣ 𝐹𝑡 −1
] (7) 

ℎ̃𝑡 = Var[ 𝑌𝑡 ∣∣ 𝐹𝑡 −1
] (8) 

where 𝐹𝑡 −1 is the natural filtration of the random 

process 𝑌𝑡  in the probability space (Ω, 𝐹, ℙ).  

We consider the ARMA(1,1) − GARCH(1,1) 

model with parameters (ϕ0, ϕ1, θ1, α0 , α1, β1
), for 

which the sufficient conditions for the stationarity of 

the modeled time series are known [8]: 

{
|ϕ1 + θ1

| < 1
𝛼1 + 𝛽1 < 1

 (9) 
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It is known that when modeling the logarithmic 

returns of the underlying asset  𝑌𝑡 = ln (
𝑆𝑡

𝑆𝑡−1
), where 

𝑆𝑡  is the asset price at time 𝑡, in the risk-neutral 

probability measure, the model takes the form [5]: 

𝑌𝑡 = 𝑒𝑟τ − 1 + √ℎ𝑡 (
𝑒𝑟τ

1 + 𝑚𝑡

) ε𝑡 , 

 ε𝑡 ∼ iid(0,1) 

(10) 

where 𝑌𝑡  is the linear approximation of the 

underlying asset return, τ is the length of the time 

interval between consecutive observations of the time 

series expressed in years [1]. Since 𝑌𝑡 represent the 

daily logarithmic returns of the underlying asset, the 

price of the underlying asset at the final time 𝑇 is 

given by 

𝑆𝑇 = 𝑆0𝑒𝑌1+𝑌2 +⋯+𝑌𝑡 (11) 

where 𝑆0 is the price of the underlying asset at the 

initial time. 

The problem of selecting the parameters of the 

underlying asset model can be formulated as a 

conditional optimization problem. We define the loss 

function as the sum of the expected relative errors in 

the estimation of the option prices – the expectation 

of the absolute value of the ratio of the difference 

between the discounted option payoff and its market 

price to the market price of the option. 

For the case where call options are considered, the 

loss function 𝑓 can be represented as follows: 

𝑓(𝑥) = ∑ 𝔼
|𝑒−𝑟𝑇𝑚𝑎𝑥(𝑆𝑇 − 𝑋, 0) − 𝐶𝑜𝑏𝑠|

𝐶𝑜𝑏𝑠
𝐶𝑎𝑙𝑙𝑠

 (12) 

where 𝑥  is the model parameters vector 
(𝜙0, 𝜙1,𝜃1 , 𝛼0, 𝛼1,𝛽1

), 𝑆𝑇 is the price of the 

underlying asset at the expiration time of the option, 

𝑋 is the options strike, 𝑟 is the risk-free interest rate, 

𝐶𝑜𝑏𝑠  are the observed market call options quotes, 

𝐶𝑎𝑙𝑙𝑠  is the set of all considered call options.  

Due to the linearity of expectation, the loss 

function (12) can be represented as the expectation of 

the sum of the absolute values of the ratios of the 

differences between the discounted option payoffs 

and their market prices to the corresponding market 

prices: 

𝑓(𝑥) = 𝔼 [ ∑
|𝑒−𝑟𝑇 max(𝑆𝑇 − 𝑋, 0) − 𝐶obs|

𝐶obs
𝐶𝑎𝑙𝑙𝑠

] (13) 

Let ξ describe the realizations of the random 

trajectories of the underlying asset, and 𝑓(𝑥, ξ) be the 

value of the loss function corresponding to these 

trajectories. Then 

𝑓(𝑥) = 𝔼ξ
[𝑓(𝑥, ξ)] (14) 

which means that this problem can be represented 

as a classical stochastic optimization problem: 

𝑚𝑖𝑛
𝑥  ∈ Ω

𝑓(𝑥)  (15) 

For the problem of calibrating the ARMA-

GARCH model for the returns of the underlying 

asset, additional conditions (9) are imposed on the 

solution to ensure the stationarity of the time series of 

the underlying asset returns. 

Thus, the problem takes the form of a  conditional 

stochastic optimization problem with a convex set of 

admissible values for the controlled parameters. 

To ensure that the domain Ω is compact, it is 

necessary to impose additional restrictions on the 

possible values of the model parameters and to 

strengthen the sufficient conditions for stationarity: 
|ϕ1 + θ1

| ≤ 1 − δ𝐴 , (16) 

α1 + β1 ≤ 1 − δ𝐺 , (17) 

α0 ≥ δα , (18) 

α1 ≥ 0, (19) 

β1 ≥ 0, (20) 
|ϕ0

| ≤ 𝐶, (21) 

|ϕ1
| ≤ 𝐶, (22) 

|θ1
| ≤ 𝐶. (23) 

where δ𝐴  > 0, δ𝐺  >  0 are small constants 

strengthening the stationarity conditions for the 

ARMA and GARCH models, respectively, 𝛿𝛼  is a  

small constant bounding the parameter α from below, 

𝐶 > 0 is a  constant bounding the model parameters 

from above. 

III. RANDOMIZED SMOOTHING METHOD AND 

RANDOMIZED STOCHASTIC PROJECTED GRADIENT 

FREE ALGORITHM 

Due to the nonlinearity and overall complexity of 

the used time series model for the underlying asset 

returns, there is no confirmation of the convexity of 

this problem, and the analytical calculation of the 

gradient of the loss function is not feasible in the case 

of a large number of considered options and a long 

planning horizon 𝑇. In such a case, the randomized 

stochastic projected gradient free algorithm [3] may 

be suitable for solving this problem, which is a 

modification of the classical gradient projection 

method and belongs to the class of stochastic 

approximation methods. 

For this algorithm at each iteration, it is necessary 

to compute the current estimate of the loss function 

value, which should be unbiased and have bounded 

variance. The estimation of the current loss function 

value can be performed using the Monte Carlo 

method. It is necessary to generate a large number of 

trajectories of the underlying asset, calculate the loss 

function value for each trajectory, and average the 

result. Let 𝑓(𝑥) be the Monte Carlo estimate of the 

loss function, i.e., 

𝑓(𝑥) =
1

𝑁
∑ 𝑓(𝑥, ξ𝑖

)

𝑁

𝑖 =1

 (24) 

where N  is the number of trajectories of the 

underlying asset, ξ𝑖  are the random daily returns of 

the underlying asset along the trajectory number 𝑖. 

It is known that the estimate obtained by the Monte 

Carlo method is unbiased:  

𝔼[𝑓(𝑥)] = 𝔼 [
1

𝑁
∑ 𝑓(𝑥, ξ𝑖

)

𝑁

𝑖=1

] = 𝑓(𝑥)  (25) 

and the variance of such an estimate is bounded in the 

case of stationarity of the studied time series: the 
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stationarity of the time series guarantees the 

boundedness of the variances of the underlying asset 

returns, which in turn implies the boundedness of the 

variance of the underlying asset price at the final time 

and the boundedness of the variance of the loss 

function itself. 

At the beginning of each iteration, it is necessary 

to approximate the gradient of the loss function with 

respect to the model parameter vector based on the 

values of the loss function. The approximation of the 

gradient of the loss function can be performed using 

the random smoothing method proposed by Nesterov  

[4]. This method allows constructing a smooth 

approximation of the stochastic gradient.  Let ν be a 

random vector in the space 𝑅𝑛  with density 

distribution ρ, then the smooth approximation of the 

function 𝑓 is given by 

𝑓μ
(𝑥) = ∫ 𝑓(𝑥 + μ𝑣)ρ(𝑣)  𝑑𝑣, (26) 

where μ > 0 is the smoothing parameter. One of the 

frequently used methods for solving similar problems 

is the smoothing method using the multidimensional 

normal distribution. If ν is a  vector drawn from an n-

dimensional standard normal distribution, the 

function admits the following approximation: 

𝑓μ
(𝑥) =

1

(2π)
𝑛
2

∫ 𝑓(𝑥 + μ𝑣) 𝑒
−

1
2

|𝑣|2

 𝑑𝑣 (27) 

which equals to the expectation 𝔼𝑣
[𝑓(𝑥 + μ𝑣) ]. 

For the domain Ω ⊆ ℝ𝑛 let us define 𝑓 ∈ ℂ𝐿
1,1(Ω) 

if the gradient of the function 𝑓 satisfies the Lipschitz 

condition in this area with constant 𝐿, that is for any 

𝑥,𝑦 ∈ Ω: 
‖∇𝑓(𝑦) − ∇𝑓(𝑥)‖ ≤ 𝐿||𝑦 − 𝑥||. (28) 

It has been proven that for 𝑓 ∈ ℂ𝐿
1,1(Ω) , its 

random smooth approximation using the normal 

distribution 𝑓μ  has the following properties [4]: 

1. 𝑓μ   is also continuously differentiable with 

Lipschitz constant 𝐿μ < 𝐿 and its gradient is given 

by: 
1

(2𝜋)
𝑛
2

∫
𝑓(𝑥 + 𝜇𝑣) − 𝑓(𝑥)

𝜇
𝑣𝑒

−
1
2

|𝑣|2

 𝑑𝑣 (29) 

2. For any 𝑥 ∈ ℝ𝑛  the following inequalities 

hold: 

|𝑓𝜇
(𝑥) − 𝑓(𝑥)| ≤

𝜇2

2
𝐿𝑛, (30) 

‖∇𝑓μ
(𝑥) − ∇𝑓(𝑥) ‖ ≤

μ

2
𝐿(𝑛 + 3)3/2, (31) 

𝔼𝑣 [‖
𝑓(𝑥 + μ𝑣) − 𝑓(𝑥)

μ
𝑣‖

2

] ≤ 

≤ 2(𝑛 + 4) +
μ2

2
𝐿2(𝑛 + 6)3 . 

(32) 

Let us represent the approximation of the 

stochastic gradient of the function 𝑓 at the parameter 

values 𝑥𝑘, where 𝑘 is the iteration number of the 

randomized stochastic projected gradient free 

algorithm, in the following form: 

𝐺μ
(𝑥𝑘, ξ𝑘 , 𝑣)

=
𝑓(𝑥𝑘 + μ𝑣, ξ𝑘

) − 𝑓(𝑥𝑘, ξ𝑘
)

μ
𝑣, 

(33) 

where ξ𝑘   are the realizations of the random daily 

returns of the underlying asset for all generated 

trajectories at the 𝑘-th iteration of the algorithm. In 

this case, it has been proven [4] that 

𝔼𝑣,ξ𝑘
[𝐺μ

(𝑥𝑘, ξ𝑘 , 𝑣)] = ∇𝑓μ
(𝑥𝑘

). (34) 

Additionally, Nesterov has proven that to improve 

the convergence rate of the algorithm, it is advisable 

to use the average of several stochastic estimates of 

the gradient of the loss function at each iteration: 

𝐺μ,𝑘 =
1

𝑚𝑘

∑ 𝐺μ (𝑥𝑘, ξ𝑘 ,𝑖 , 𝑣𝑘,𝑖),

𝑚𝑘

𝑖 =1

 (35) 

where 𝐺μ,𝑘  is the approximation of the gradient of 

the loss function, in the direction opposite to which 

the algorithm step will be taken at the 𝑘-th iteration. 

The randomized stochastic projected gradient free 

(RSPGF) algorithm consists of several steps and is as 

follows: 

1. At the beginning of each iteration of the 

algorithm, it is necessary to determine the current 

approximation of the gradient of the loss function 

𝐺μ ,𝑘. 

2. Then, it is necessary to calculate the new 

parameter values – to take a step in the direction of 

the negative gradient of the loss function. 

3. If the new parameter values fall outside the 

domain, it is necessary to find the projection of the 

parameter vector onto the domain and use the 

projection result as the next considered set of 

parameters. 

4. Based on the new parameter values of the 

model, a  new approximated value of the loss function 

𝑓(𝑥𝑘+1
) can be calculated.  

5. Next, it is necessary to check whether the 

chosen stopping condition of the method is satisfied. 

If for the new parameter vector or the new loss 

function value the stopping condition is not met, it is 

necessary to proceed to the next iteration of the 

method and return to step 1. 

Formally, the iteration number 𝑘 of the algorithm 

can be described as follows: 

x𝑘+1 = πΩ(𝑥𝑘 − λ𝑘 ⋅ 𝐺μ ,𝑘), (36) 

where λ𝑘  is the step size at the 𝑘 − 𝑡ℎ iteration, πΩ  

is the projection onto the domain of the loss function . 

The stopping condition of the method can be, for 

example, that the norm of the gradient of the loss 

function does not exceed a certain value: 

||∇𝑓(𝑥) || ≤ ϵ. (37) 

It has been proven that the randomized stochastic 

projected gradient free algorithm converges on 

average at a  rate of 𝒪(𝑛σ2 /ϵ2) to an ϵ −stationary 

point 𝑥  [3]: 

𝔼[||𝑔Ω
(𝑥)||2] ≤ ϵ, (38) 



International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 9, 2025 

 

 

 

63 

 

where 𝑛 is the number of model parameters, 𝑔Ω
(𝑥) 

is the generalized projection of the gradient of the 

function 𝑓 at the point 𝑥 , σ is a  constant such that its 

square bounds the variance of the stochastic 

approximation of the gradient: 

𝔼[||𝐺μ − ∇𝑓(x)||2] ≤ σ2 . (39) 

Moreover, the sufficient conditions for the 

convergence of the algorithm when using the above 

method of stochastic gradient approximation are [3]:  

1. Lipschitz continuity of the loss function. 

2. 𝐿(ξ)- Lipschitz continuity of the loss 

function estimate, where ξ are all random daily 

returns of the asset in all Monte Carlo trajectories. 

3. Boundedness of the second moment of the 

Lipschitz constant of the loss function 

approximation: 𝔼[𝐿2(𝜉)] < 𝐺2.  

4. Lipschitz continuity of the gradient of the 

loss function. 

5. Boundedness of the gradient of the loss 

function. 

Additionally, it is necessary that the step size λ𝑘  

satisfies the condition 

λ𝑘 ≤
1

2𝐿√(𝑛 + 4)
, (40) 

where 𝐿 is the Lipschitz constant of the loss 

function 𝑓. 

IV. CONVERGENCE OF THE RSPGF ALGORITHM 

FOR THE ARMA-GARCH MODEL CALIBRATION 

PROBLEM 

Theorem. In the case of stationarity of the stud ied  

time series in both the original and risk-neutral 

probability measures, the loss function 𝑓(𝑥)  in the 

calibration problem of the risk-neutral ARMA-

GARCH time series model for the underlying asset 

returns using market option prices satisfies the 

following conditions: 

1. The loss function satisfies the Lipschitz 

condition: 

|𝑓(𝑦) − 𝑓(𝑥) | ≤ 𝐿||𝑦 − 𝑥||; (41) 

2. For fixed values of the random returns, the 

loss function satisfies the Lipschitz condition: 

|𝑓(𝑦, ξ) − 𝑓(𝑥, ξ)| ≤ 𝐿(ξ)||𝑦 − 𝑥||; (42) 

3. The second moment of the Lipschitz 

constant 𝐿(ξ) is bounded: 

𝔼[𝐿2(𝜉)] < 𝐺2; (43) 

4. The gradient of the loss function satisfies the 

Lipschitz condition: 

||∇𝑓(𝑦) − ∇𝑓(𝑥) || ≤ 𝐿∇||𝑦 − 𝑥||; (44) 

5. The gradient of the loss function is bounded: 

||∇𝑓(𝑥)|| ≤ 𝑀∇, 
 ∀𝑥, 𝑦 ∈ Ω, ξ ∈ 𝒵, 

(45) 

where 𝒵   is the probability space of the random 

components of the daily returns over the entire 

considered time interval for all considered trajectories 

of the underlying asset. 

Proof. From the general form (13) of the loss 

function 𝑓(𝑥), taking into account the properties of 

Lipschitz functions, it is easy to see that a sufficient 

condition for the validity of the above properties of 

𝑓(𝑥) is their validity for 𝑆𝑇
(𝑥), 𝑆𝑇

(𝑥, ξ) and ∇𝑆𝑇
(𝑥) 

respectively. 

First, let us prove that since 𝑓(𝑥) = 𝔼ξ
[𝑓(𝑥, ξ)], if 

𝑓(𝑥, ξ) is Lipschitz continuous with constant 𝐿(ξ) , 

then f(𝑥)  satisfies the Lipschitz condition with 

constant 𝐿 = 𝔼ξ
[𝐿(ξ)]. To do this, let us estimate 

|𝑓(𝑦) − 𝑓(𝑥) |: 
|𝑓(𝑦) − 𝑓(𝑥) | = |𝔼ξ

[𝑓(𝑦 , ξ)]

− 𝔼ξ
[𝑓(𝑥, ξ)]|. 

(46) 

By the property of expectation, the difference of 

expectations is equal to the expectation of the 

difference: 

|𝔼ξ
[𝑓(𝑦, ξ)] − 𝔼ξ

[𝑓(𝑥, ξ)]| = |𝔼ξ
[𝑓(𝑦, ξ) − 𝑓(𝑥, ξ)]|

≤ 𝔼ξ
[|𝑓(𝑦, ξ) − 𝑓(𝑥, ξ)|]. 

Since 𝑓(𝑥, ξ)  is Lipschitz continuous with constant 

𝐿(ξ) , it holds that 

𝔼ξ
[|𝑓(𝑦, ξ) − 𝑓(𝑥, ξ)|] ≤ 𝔼ξ

[𝐿(ξ)|𝑦 − 𝑥|]. (47) 

Since |𝑦 − 𝑥| does not depend on ξ, it can be taken 

out of the expectation: 
|𝑓(𝑦) − 𝑓(𝑥)| ≤ 𝔼ξ

[|𝑓(𝑦, ξ) − 𝑓(𝑥, ξ)|]

≤ 𝔼ξ
[𝐿(ξ)] ⋅ |𝑦 − 𝑥|, 

thus, by definition, 𝑓(𝑥) satisfies the Lipschitz 

condition (41) with constant 𝔼ξ
[𝐿(ξ)]. 

From this, it also follows that, if for fixed values of 

the random returns the gradient of the loss function 

satisfies the Lipschitz condition with constant 𝐿∇
(ξ): 

||∇𝑓(𝑦, ξ) − ∇𝑓(𝑥, ξ)|| ≤ 𝐿∇
(ξ)||𝑦 − 𝑥||, (48) 

then the gradient of the loss function satisfies the 

Lipschitz condition (44) with constant 𝐿∇ =
𝔼ξ

[𝐿∇
(ξ)]: 

||∇𝑓(𝑦) − ∇𝑓(𝑥) || ≤ 𝔼ξ
[𝐿∇

(ξ)]||𝑦 − 𝑥||. (49) 

Here and below, for any of the model parameters 

ψ we introduce the notations: 

𝑌𝑡 ≔ 𝑌𝑡
(ψ, ξ); 𝑌𝑡̂ ≔ 𝑌𝑡(ψ̂,ξ), (50) 

ℎ𝑡 ≔ ℎ𝑡
(ψ, ξ); ℎ𝑡̂ ≔ ℎ𝑡(ψ̂, ξ), (51) 

𝑚𝑡 ≔ mt
(ψ,ξ); 𝑚𝑡̂ ≔ 𝑚𝑡(ψ̂, ξ). (52) 

Also, note that due to the triangle inequality, it is 

clear that the above properties hold for 𝑆𝑇
(𝑥) if they 

hold for each of the model parameters individually. 

To prove the theorem, we will use the following 

lemmas [6]. 

Lemma 1.  If the functions 𝑓(𝑥)  and 𝑔(𝑥)  are 

bounded by constants 𝑀𝑓  and 𝑀𝑔  and satisfy the 

Lipschitz condition with constants 𝐿𝑓  and 𝐿𝑔  

respectively in some domain Ω, then function 𝑓(𝑥) ⋅
𝑔(𝑥)  also satisfies the Lipschitz condition with 

constant 𝑀𝑓 𝐿𝑔 + 𝑀𝑔 𝐿𝑓  on that domain Ω. 

Lemma 2. If the partial derivative of the function 
∂𝑓(𝑥,ξ)

∂𝑥
 is bounded by constant 𝐿(ξ)  on the interval 

[𝑎; 𝑏], then function 𝑓(𝑥, ξ) satisfies the Lipschitz 

condition with constant 𝐿(ξ)  on this interval. 

Corollary. The function 𝑓(𝑥) = 𝑒𝑥  is Lipschitz 

continuous on any finite interval [𝑎; 𝑏], since its 
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derivative 
𝑑𝑓(𝑥)

𝑑𝑥
= 𝑒𝑥  is bounded on any finite 

interval [𝑎; 𝑏]. 
Lemma 3. If functions 𝑓(𝑥)  and 𝑔(𝑥)  are bounded 

by constants 𝑀𝑓  and 𝑀𝑔  and are Lipsitz continuous 

with constants 𝐿𝑓  and 𝐿𝑔  respectively, and the 

function 𝑔(𝑥)  is bounded from below by constant 

𝑚𝑔 , then the function 
𝑓(𝑥)

𝑔(𝑥)
 is Lipsitz continuous with 

constant 
𝑀𝑓𝐿𝑔+𝑀𝑔 𝐿𝑓

𝑚𝑔
2 .  

Let us prove the fulfillment of the necessary 

conditions of the theorem for the model parameter 

ϕ0. The proof for the other model parameters is 

constructed similarly.  

First, let us prove the fulfillment of the Lipschitz 

condition for 𝑆𝑇 for any fixed ε = (ε1, … , ε𝑇
). Note 

that ℎ𝑡 = α0 + α1ℎ𝑡 −1 + β1ϵ𝑡 −1
2  is bounded from 

above due to the boundedness of the model 

parameters. Also ℎ𝑡  is bounded from below by α0 , 

since the parameters (𝜙0 , 𝜙1,𝜃1 , 𝛼0, 𝛼1 , 𝛽1
) must be 

non-negative. Also note that 
𝑒𝑟τℎ𝑡

(1+𝑚𝑡)2 is the conditional 

variance of 𝑌𝑡: 
𝑒𝑟τ ℎ𝑡

(1 + 𝑚𝑡
)2

= Var[𝑌𝑡
|𝐹𝑡 −1

], (53) 

which is bounded due to the stationarity of the 

studied time series of returns in the risk-neutral 

probability measure by the condition of the theorem. 

Let us denote the constant that bounds the conditional 

variance of the time series 𝑌𝑡 by 𝐷𝑡 . 

Let us show that the return 𝑌𝑡 satisfies the 

Lipschitz condition by the mathematical induction 

method. The Lipschitz condition holds at t = 0, since 

𝑌0 = 𝑌0̂ = 0. Then 

|𝑌𝑡 − 𝑌𝑡| = |ε𝑡√ℎ𝑡𝑒𝑟τ (
1

1 + 𝑚𝑡

−
1

1 + 𝑚𝑡̂

)|

= |(𝑚𝑡̂ − 𝑚𝑡
)

ε𝑡√ℎ𝑡𝑒𝑟τ

(1 + 𝑚𝑡
)(1 + 𝑚𝑡̂

)
| 

The term 
√ℎ𝑡𝑒𝑟τ

(1+𝑚𝑡)(1+𝑚𝑡̂)
 is bounded, since it 

represents the product of bounded conditional 

standard deviations σ𝑡  and σ𝑡̂  of models with 

parameters ϕ0 and ϕ0̂ respectively, to the √ℎ𝑡 , which  

is bounded from below: 

√ℎ𝑡𝑒𝑟τ

(1 + 𝑚𝑡
)(1 + 𝑚𝑡̂

)
=

σ𝑡 ⋅ σ𝑡̂

√ℎ𝑡

. (54) 

Let this term be bounded by some constant 𝐷𝑡̂ . Then 

|𝑌𝑡 − 𝑌𝑡| < εt 𝐷𝑡̂
|mt̂ − mt

| = 

= εt 𝐷𝑡̂ϕ0 − ϕ0̂ + ϕ1(𝑌𝑡−1 − 𝑌̂𝑡−1) < 

< εt 𝐷𝑡̂|ϕ0 − ϕ0̂| + ϕ1εt 𝐷𝑡̂|𝑌𝑡−1 − 𝑌𝑡−1|. 

Since ϕ1 < 1 and the Lipsitz condition holds for 

𝑌𝑡−1 by the induction hypothesis with some constant 

𝐿𝑌𝑡−1
(ε𝑡 −1

), it also holds for 𝑌𝑡 with constant 

𝐿𝑌𝑡
(ε𝑡

) = εt 𝐷𝑡̂ (1 + ϕ1𝐿𝑌𝑡−1
(ε)). 

It is also easy to see that the return 𝑌𝑡 is bounded 

by some constant 𝑀𝑌𝑡
(ε𝑡

) because it is given by the 

sum of a constant 𝑒𝑟τ − 1 and the product of the 

conditional variance, which is bounded due to the 

stationarity of the considered time series, and the 

random return √ℎ𝑡 (
𝑒𝑟τ

1+𝑚𝑡
) ε𝑡: 

𝑀𝑌𝑡
(ε𝑡

) = 𝑒𝑟τ − 1 + 𝐷𝑡ε𝑡 . (55) 

Let us now show the fulfillment of the Lipschitz 

condition for the loss function with respect to the 

parameter ϕ0 and the boundedness of the second 

moment of the corresponding Lipschitz constant. As 

mentioned earlier, for this, it is sufficient to show tha t 

these properties hold for the price of the base asset at 

the final time 𝑇. Since 𝑆𝑇 = exp (𝑌1 + 𝑌2 + ⋯ + 𝑌𝑇
),  

by induction it is easy to see that it is sufficient to 

show these properties for the function  𝑒 𝑌𝑡. Let us use 

Lemma 2 and its corollary: 

|𝑒 𝑌𝑡 − 𝑒 𝑌𝑡̂ | < 𝑒 𝑀𝑌𝑡
(ε𝑡)

|𝑌𝑡 − 𝑌𝑡̂|

< 𝑒𝑀𝑌𝑡
(ε𝑡)

𝐿𝑌𝑡
(ε𝑡

)|ϕ0 − ϕ0̂|. 

Thus, 𝑒𝑌𝑡  satisfies the Lipschitz condition with 

constant 𝑒𝑀𝑌𝑡
(ε𝑡)

𝐷𝑡̂ (1 + ϕ1𝐿𝑌𝑡−1
(ε)). Let us show 

the boundedness of the second moment of this 

constant. We will use the Cauchy-Bunyakovsky 

inequality for expectations [7]: 

𝔼 [(𝑒 𝑀𝑌𝑡
(ε𝑡)

𝐿𝑌𝑡
(ε𝑡

))
2

] = 𝔼[𝑒2𝑀𝑌𝑡
(ε𝑡)

𝐿𝑌𝑡
2 (ε𝑡

)] ≤ 

≤ √𝔼[𝑒4𝑀 𝑌𝑡
(ε𝑡)

] ⋅ √𝔼[𝐿𝑌𝑡

4 (ε𝑡
)]. 

Therefore, it is sufficient to show the boundedness 

of the fourth moments of  𝑒𝑀 𝑌𝑡
(ε𝑡)

 and 𝐿𝑌𝑡
(ε𝑡

). As 

mentioned earlier, 𝑀𝑌𝑡
(ε𝑡

) = 𝑒𝑟τ − 1 + 𝐷𝑡ε𝑡 , which 

means that 𝑀𝑌𝑡
(ε𝑡

) is normally distributed with 

parameters 𝑒𝑟τ − 1 and 𝐷𝑡
2. Thus, the fourth moment  

of 𝑀𝑌𝑡
(ε𝑡

)  is nothing but the value of the moment-

generating function of the normal distribution at the 

point 𝑡 = 4, or which there is an analytical formula: 

𝔼[𝑒4𝑀 𝑌𝑡
(ε𝑡)

] = 𝑒
4(𝑒𝑟τ−1)+

16𝐷𝑡
2

2 , (56) 

which means that the fourth moment 𝑀𝑌𝑡
(ε𝑡

) is finite. 

Let us now prove the boundedness of the fourth 

moment of 𝐿𝑌𝑡
(ε𝑡

) by the method of induction. Since 

𝑌0 = 0 for any parameter value ϕ0, we can take 

𝐿𝑌0
= 1. Recall that 𝐿𝑌𝑡

(ε𝑡
) = ε𝑡 ⋅ 𝐿𝑌𝑡−1

(ε𝑡 −1
) up to a  

constant multiplier, and therefore, by the Cauchy-

Bunyakovsky inequality: 

𝔼[𝐿𝑌𝑡
4 (ε𝑡

)] = 𝔼 [(ε𝑡 ⋅ 𝐿𝑌𝑡−1
(ε𝑡 −1

))
4

]

≤ √𝔼[εt
8] ⋅ 𝔼 [(𝐿𝑌𝑡−1

(ε𝑡−1
))

8
], 

From which we can see that 𝐿𝑌𝑡
(ε𝑡

) is proportional 

to the moment of the standard normal distribution of 

order 8𝑡. Therefore, the fourth moment of 𝐿𝑌𝑡
(ε𝑡

) 

since all moments of the standard normal distribution  

are bounded. 

Thus, it has been shown that the second and fourth  

moments of the Lipschitz constant for 𝑆𝑇 are 

bounded, which implies that the second moment of 

the Lipschitz constant of the loss function with 

respect to the parameter ϕ0 is also bounded. 
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Let us show the validity of the Lipschitz condition 

for the partial derivative  
∂𝑆𝑇

∂ϕ0
, which can be defined 

recursively as follows, using the method of 

mathematical induction: 

∂𝑆𝑇

∂ϕ0

= exp(𝑌1 + ⋯ + 𝑌𝑡
) ⋅ (

∂𝑌1

∂ϕ0

+ ⋯ +
∂𝑌𝑡

∂ϕ0

) (57) 

∂𝑌𝑡

∂ϕ0

=
∂𝑚𝑡

∂ϕ0

⋅ (−1)
𝑒𝑟τ √ℎ𝑡

(1 + 𝑚𝑡
)2

ε𝑡  (58) 

∂𝑚𝑡

∂ϕ0

= 1 + ϕ1

∂𝑌𝑡−1

∂ϕ0

 
(59) 

Let 
∂𝑌𝑡−1

∂ϕ0
 satisfy the Lipsitz condition with constant 

𝐿𝑌𝑡−1
(ε𝑡 −1

) by the induction hypothesis, then the 

Lipschitz condition holds for 
∂𝑚𝑡

∂ϕ0
 with constant  

ϕ1𝐿𝑌𝑡−1
(𝜀𝑡 −1

).  

Let us show the validity of the Lipschitz condition 

for the term 
𝑒𝑟𝜏

√ℎ𝑡

(1+𝑚𝑡
)2. First note that |√ℎ𝑡 − √ℎ𝑡̂| = 0, 

since ℎ𝑡  does not depend on ϕ0, which means that 

√ℎ𝑡  satisfies the Lipsitz condition. As mentioned 

earlier, √ℎ𝑡  is bounded from below, 
𝑒𝑟𝜏

√ℎ𝑡

(1+𝑚𝑡)2 is 

bounded from above, which means that 
1

(1+mt)2  is 

also bounded from below. Then, by Lemmas 2 and 3 , 

the function 
𝑒𝑟𝜏

√ℎ𝑡𝜀𝑡

(1+𝑚𝑡 )2  is Lipschitz continuous if 

(1 + 𝑚𝑡
)2 satisfies the Lipschitz condition. First note 

that: 
|(1 + 𝑚𝑡

)2 − (1 + 𝑚𝑡̂
)2| = 

= |(𝑚𝑡 − 𝑚𝑡̂
)(2 + 𝑚𝑡 + 𝑚𝑡̂

)|. 
(60) 

Then since (1 + mt
)2 is bounded by some constant 

𝑀𝑚
2 (ε) and it has been shown that 𝑌𝑡 satisfies the 

Lipsitz condition, then  
|(𝑚𝑡 − 𝑚𝑡̂

)(2 + 𝑚𝑡 + 𝑚𝑡̂
)| ≤ 2𝑀𝑚

(ε)|𝑚𝑡 − 𝑚𝑡̂
| = 

= 2𝑀𝑚
(ε)|𝜙0 − 𝜙0̂ + ϕ1(𝑌𝑡−1 − 𝑌𝑡−1)| ≤ 

≤ 2𝑀𝑚
(ε) (1 + ϕ1𝐿𝑌𝑡−1

(ε)) |ϕ0 − ϕ0̂|. 

Which means that (1 + 𝑚𝑡
)2 is Lipsitz continuous 

with constant 2𝑀𝑚
(ε) (1 + ϕ1𝐿𝑌𝑡−1

(ε)). Therefore, 

by Lemma 1, 
∂𝑌𝑡

∂ϕ0
 is also Lipsitz continuous. Thus, 

using Lemmas 1 and 2, we obtain that 
∂𝑆𝑇

∂ϕ0
  is 

Lipschitz continuous. Consequently, conditions 1–4 

of the theorem hold for the loss function 𝑓(𝑥) with 

respect to the parameter ϕ0. 

As mentioned earlier, the proof of the validity of 

conditions 1–4 for the other model parameters is 

constructed similarly by induction. Therefore, due to 

the triangle inequality, since conditions 1–4 of the 

theorem hold for each of the model parameters, they 

also hold for the loss function 𝑓(𝑥).  

Since the domain Ω is compact and the gradient o f  

the loss function is Lipschitz continuous, it is also 

bounded on this set, which means that condition 5 of 

the theorem is also satisfied. This completes the 

proof. 

Corollary. The randomized stochastic projected 

gradient-free algorithm, applied to calibrate the risk-

neutral ARMA-GARCH time series model for base 

asset returns using market option prices, converges 

on average to an 𝜖- stationary point at a  rate of 
(6σ2/ϵ2).  

V. CONCLUSION 

In this paper, we formulated and proved a theorem  

on the properties of the loss function in the ARMA-

GARCH model calibration problem using market 

option prices. As a corollary, we established that the 

randomized stochastic projected gradient-free 

algorithm converges on average to an 𝜖-stationary 

point at a  rate of 𝒪(6σ2/ϵ2) for this problem. This 

result provides a theoretical guarantee for the 

applicability of the proposed algorithm to such 

calibration tasks.  
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