
International Journal of Open Information Technologies ISSN: 2307-8162 vol. 3, no. 7, 2015

Abstract— As soon as more and more the modern

applications are deployed on the web, JavaScript has become a
mainstream programming environment. JavaScript
applications nowadays are big programming systems. We can
mention here web portals, online games, graphics, media
management, and even data science. Of course, the memory
management is a very important problem, especially, for the
dynamic programming languages. In this paper, we provide a
survey of memory leaks patterns in JavaScript.

Keywords—JavaScript, memory management, memory leaks,
garbage collection.

I. INTRODUCTION
JavaScript has been around more than 20 years and

nowadays is one of the most popular web development
languages. It has the ability to deliver rich, dynamic web
content as well as being relatively lightweight and easy to
use [1]. JavaScript applications nowadays should support
heavyweight web applications. We can mention here online
games, graphics, media management, and even data mining.
In the same time, processors on computing devices
(including mobile terminals) are getting more and more
elaborated [2]. It converts memory management in
JavaScript into a very important issue.

Usually, in JavaScript, we do not think about memory
management. Programmers can easily create and reuse
objects, where JavaScript engine takes care about low-level
details. But in the same time it is very to remember the use
cases when the occupied memory for open tab in your
browser is getting huge. Usually, it is because of memory
leaks.

The central concept of JavaScript memory management is
a concept of reachability. A distinguished set of objects are
assumed to be reachable: these are known as the roots.
Typically, these include all the objects referenced from
anywhere in the call stack (that is, all local variables and
parameters in the functions currently being invoked), and
any global variables.

Objects are kept in memory while they are accessible
from roots through a reference or a chain of references [3].

There is a Garbage Collector in the JavaScript engine (in
the browser), which cleans memory occupied by unreachable
objects [4].

Let us see the following classical example with JavaScript

Manuscript received Jun 15, 2015.
Evgeniy Ilyushin is a student at Lomonosov Moscow State University

(e-mail: john.ilyushin@gmail.com).
Dmitry Namiot is senior scientist at Lomonosov Moscow State

University (e-mail: dnamiot@gmail.com).

closures.
The closure makes all variables of outer functions persist

while the inner function is alive. So, suppose our application
creates a function and one of its variables contains a large
string [3].

function f() {
 var data = "Large piece of data …”

;

 /* do something using data */
 function inner() {
 // …
 }
 return inner;
}

While the function inner stays in memory, then the

variable data will hang in memory until the inner function is
alive. JavaScript engine could have no idea which variables
may be required by the inner function, so it keeps
everything.

The next classical example is saving JavaScript data in
Document Object Model (DOM) [5].

In this paper, we would like to survey memory leaks
patterns in in JavaScript, as well as memory leaks
measurements.

The rest of the paper is organized as follows. In Section
II, we describe memory leaks patterns. The Section III is
devoted to memory leaks measurements.

II. MEMORY LEAKS PATTERNS
In this section, we would like to discuss the typical

patterns for memory leaks in JavaScript.

A. Circular references

var obj;
function circular_references(){
obj=document.getElementById(

"element");
document.getElementById("element
").expandoProperty = obj;
obj.bigString=

new Array(1000).join(new
Array(2000).join("XXXXX"));

};

Here the global variable obj refers to the DOM
element element at the same time element refers to the
global object through its expandoProperty.

On JavaScript Memory Leaks
Evgeniy Ilyushin, Dmitry Namiot

27

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 3, no. 7, 2015

B. Closures

function operat(x) {
 function operatInn(y) {
 return x + y;
 } ;
 return operatInt;
}

var operat1 = operat(4);
var operat2 = operat1(3);

In the example, the operat function cannot be collected
"garbage collector", as a function object is assigned to
a global variable, and is still available. The operat
function can be used through operat(n).

C. Closures and circular references

function closureFunction()
{
 var obj =

document.getElementById("element");
 obj.onclick=function

innerFunction(){
 alert("Hi! I will leak");};
 obj.bigString = new

Array(1000).join(new
Array(2000).join("XXXXX"));
};

A JavaScript object obj contains a reference to a DOM
object (referenced by the id "element"). The DOM
element, in turn, has a reference to the JavaScript obj.
The resulting circular reference between the JavaScript
object and the DOM object causes a memory leak.

D. Timers

One of the most common places associated with
memory leaks is in a loop, or in setTimeout
()/setInterval () functions.

var obj = {
 callMeMaybe: function () {
 var myRef = this;
 var val = setTimeout(function () {

console.log('Time is running
out!');

 myRef.callMeMaybe();}, 1000);
 }
};

obj.callMeMaybe();
obj = null;

After this section of code timer still continue to work.
An object obj isn't cleared, because the closure was

transferred setTimeout and must be maintained for the
future performance. In turn, it holds a reference to the
life safety as it contains myRef. This would be the same
if we handed closure of any other function, while
retaining the link.

III. MEMORY LEAKS MEASUREMENTS
Of course, we need some metrics for memory

management. In this section, we would like to discuss
memory leaks detection and profiling.

1. Google's Chrome Developer Tools

Basic terms
• GC - garbage collection
• JSHeap - graph of related objects
• Shallow size - this is the size of memory that is

held by the object itself
• Retained size - this is the size of memory that is

freed once the object itself is deleted along with its
dependent objects that were made unreachable from
GC roots

Prerequisites

• Should not be running other programs;
• Chromium should be started with the default

settings (if you are using some experimental features,
reset them to default on the page chrome: // flags);
• Need to leave open only one tab with a test site

(this limitation is due to the fact that Chromium can
render multiple tabs in a single process, and,
accordingly, in the results of the profiling will be
unnecessary objects);

Steps:

• Open "Developer tools" and select the Timeline
memory view. Then select "Memory" checkbox
and start recording.

• Next step, triggering events that may lead to
memory leaks some number of times or reload all
page for analyzing. Then run the garbage
collection and stop recording.

Fig. 1. Developer tools

After garbage collection, all the curves in the
graph should come to make the initial state,

28

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 3, no. 7, 2015

otherwise in the test code are present at the
memory leaks (Figure 1).

• Analysis of the snapshots. For it, we need to
select the Profiles view and take a snapshot. Then
you need to follow the steps that lead to the
memory leaks and take another snapshot. When
we take a snapshot GC is running. After that, we
can compare the snapshots and detect memory
leaks (Fugure 2).

Fig. 2. Snapshots

On the figure, we can see tree of leaking objects. We skip
the following objects "compiled code", "closure" and
"system". If “array” and “string” have large “shallow size”,
we will analyze these objects. If an object has a yellow
background, it has a reference that does not allow GC to
utilize the object. If an object has a red background, it is
detached DOM, that has a reference from JavaScript code. If
we move the cursor over an object, Chrome will display a
tooltip with information about the object. The information
will help us to find the object in code and fix leaks.

2. Mozilla’s Developer Tools
In order to use advanced developer tools of Firefox we need
to create a debug build instead of a release build. For more
on building process, see the page [6]. In our case we use a
release of Firefox "Nightly".
Steps:
• Open a performance tool that gives developers a better
understanding of what is happening from a performance
standpoint within their applications and start recording
performance.

Fig. 3 FireFox performance tools

• Open an analyzed page, follow the steps that lead to the
memory leaks some number of times, then stop recording.

Fig. 4. Data recording

We choose "Allocations tree" view. This we can see objects,
which haven't been collected GC. If we click the mouse on
an object, tool will open area of JavaScript code related to
the object. Also, the recording view gives developers a quick
way to zoom into areas where frame rate problems are
occurring (Figure 5).

Fig.5 Frames

IV. CONCLUSION
In this short paper, we provide a survey for JavaScript
memory leaks. As the Web programming with JavaScript
continues evolving, the size and the complexity of
JavaScript applications is constantly growing. Of course, the
memory management is very important. For JavaScript
applications it is, at the first hand, the quality of Garbage
Collector. But before we start to describe Garbage
Collectors, we need the whole picture for the typical
memory leaks patterns.

ACKNOWLEDGMENT
We would like to thank Samsung Research Center in
Moscow for the inspiration of this research.

REFERENCES
[1] Is JavaScript The Primary Programming Language For The

Enterprise? http://www.codeinstitute.net/javascript-primary-
programming-language-enterprise/ Retrieved: May, 2015.

[2] Namiot, Dmitry, and Vladimir Sukhomlin. "JavaScript Concurrency
Models." International Journal of Open Information Technologies 3.6
(2015): 21-24.

[3] JavaScript memory leaks http://javascript.info/tutorial/memory-leaks
Retrieved: Jun, 2015

[4] Maffeis, Sergio, John C. Mitchell, and Ankur Taly. "An operational
semantics for JavaScript." Programming languages and systems.
Springer Berlin Heidelberg, 2008. 307-325.

[5] Heilmann, C. (2006). Beginning JavaScript with DOM scripting and
Ajax: from novice to professional. Apress.

29

https://developer.mozilla.org/en-US/docs/Tools/Performance

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 3, no. 7, 2015

[6] FireFox build https://developer.mozilla.org/en-

US/docs/Simple_Firefox_build Retrieved: Jun, 2015

30

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 3, no. 7, 2015

Аннотация— С ростом числа веб-приложений,

JavaScript становится одним из основных языков
программирования. Современные JavaScript приложения
представляют собой достаточно большие программные
системы. Мы можем упомянуть здесь веб-порталы, игры,
мультимедийные приложения и даже обработку данных.
Естественно, управление памятью представляет собой
важную проблему, особенно в динамических языка
программирования. В данной работе при приводим обзор
моделей утечки памяти в JavaScript.

Ключевые слова—JavaScript, управление памятью,
утечки памяти, сборка мусора.

Об утечках памяти в JavaScript
Евгений Ильюшин, Дмитрий Намиот

31

	I. INTRODUCTION
	II. Memory leaks patterns
	A. Circular references
	B. Closures
	C. Closures and circular references
	D. Timers

	III. Memory leaks measurements
	IV. Conclusion
	Acknowledgment
	References

