
International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 9, 2025

7

Abstract — Modern decentralized cyber-physical

environments (DCPEs) are dynamic environments where

ensuring trust between autonomous agents is a critical task,

requiring efficient methods for trust computation between
agents under resource constraints. This study aims to reduce

the computational costs in trust evaluation, caused by the

quadratic complexity of traditional methods, limiting their

applicability in resource-constrained devices. To address this

issue, the paper proposes pipelining modular multiplication
operations to accelerate computations. This approach enables

parallel data processing, reduces energy consumption, and

ensures deterministic operation execution times, which are

crucial for dynamic environments. The integration of pipelined

modular multiplication operations, implemented at the
hardware level, into a trusted interaction model, as well as

their application in combination with blockchain technologies

for decentralized updating of the trust matrix, is considered.

Experimental results demonstrate a six-fold acceleration of

modular multiplication operations compared to classical
methods, as well as enhanced system resilience against attacks.

The implementation of the proposed method opens up new

possibilities for creating scalable and energy-efficient DCPEs

capable of operating in highly dynamic and uncertain

conditions.

Keywords — decentralized cyber-physical systems, pipelined

multipliers, modular operations, trust matrix, hardware

acceleration, blockchain, energy efficiency.

I. INTRODUCTION

Modern decentralized cyber-physical environments

(DCPEs) [1] are complex dynamic systems where multiple

autonomous entities - both physical (robots, sensors) and

virtual (software agents) - interact. A key challenge in such

systems is ensuring trusted interactions among agents,

particularly in the absence of centralized control. Trust here

serves as a quantitative measure of confidence in the

reliability, competence, and predictability of other system

participants, computed based on multitude of factors such as

interaction history and current context. However, as DCPEs

scale and the number of interactions grows, traditional trust

assessment methods face high computational costs, which

Article received on May 21, 2025.

Petrenko Vyacheslav Ivanovich, Head of the Department of Information

protection arrangement and technologies , North-Caucasus Federal
University, Stavropol, Russia (email: vipetrenko@ncfu.ru).

Sutormin Matvey Pavlovich, Student of Information Secu rity , No r th-
Caucasus Federal University, Stavropol, Russia (email:
sutorminp@gmail.com).

are especially critical for resource-constrained devices [2],

such as mobile robots or embedded systems.

High computational costs are due to the need for frequen t

recalculation of trust levels in real time, which requires

performing numerous modular operations, including

multiplication and addition with weighting coefficients.

These computational operations are the basis for weighted

trust metrics, but their software implementation on general-

purpose processors often proves to be too slow and energy-

intensive. This paper proposes solving these problems

through pipelined modular multiplication operations

implemented at the hardware level.

Pipelined modular multiplication operations are highly

efficient computational methods optimized for sequential

modular multiplications with minimal delays and resource

usage. Their key advantage lies in parallel computation

organization [3, 4], significantly accelerating data

processing compared to sequential algorithms. Integrating

such methods into the computational systems of robotic

agents optimizes critical operations without increasing the

load on the central processor.

The scientific novelty of this work lies in the application

of pipelined multiplication algorithms in a trusted

interaction model [5], which has not been previously

explored in the context of decentralized cyber-physical

systems. The proposed approach not only speeds up

computations but also reduces energy consumption, which is

particularly important for autonomous agents operating

under resource constraints. Additionally, hardware

implementation enhances resilience against potential attacks

on system software components.

The subsequent sections of the paper will detail the

architecture of the proposed solution, including the

formalization of trust computation using pipelined

multipliers, methods for their integration into agents, and

experimental results validating the approach's effectiveness.

II. CURRENT STATE OF THE ART

Decentralized cyber-physical environments (DCPEs)

consist of interacting physical and virtual entities - robots,

sensors, software agents, and computational nodes - united

to achieve common goals. Their defining feature is the

absence of centralized control: interactions among entities

are governed by dynamic connections, and the system

structure adapts to environmental changes and participant

actions. Each entity has unique attributes (identifier,

location, resource) that determine its role, beha vior, and

Pipelining of modular multiplication operations

for efficient trust computation in decentralized

cyber-physical environments

V.I. Petrenko, M.P. Sutormin

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 9, 2025

8

resource access rights. Active subjects (agents) initiate

actions and make decisions, while passive entities (data,

devices) serve as operation targets.

Trust is the basis of interaction in decentralized

architectures. It reflects confidence in the reliability,

competence, and predictability of participants, formed

through analyzing their actions, interaction history, and

context. For example, in multi-agent robotic systems

(MARS), the introduction of rogue robots or misinformation

dissemination necessitates algorithms capable of

dynamically assessing agents' usefulness to the collective.

Trust models like the Buddy Security Model (BSM) [6] and

reputation systems offer solutions through iterative metric

updates. In the works of Zikratov [7–9] trust is defined as

the willingness to interact based on an agent's actions, while

reputation is a stable assessment of its qualities,

distinguishing legitimate participants from malicious ones.

Let's consider the main computational challenges that

arise when calculating trust. Algorithmic complexity in this

context characterizes the mathematically expressed

dependence of the required computational resources on the

number of input data . The main complexity arises from the

high load of real-time trust matrix recalculations. This

complexity is expressed as O(n²), indicating quadratic

growth in required computations as the number of agents n

increases. In practice, this leads to exponential

computational load growth even with a small increase in

participants, as each agent's trust relationships with all

others must be calculated. Dynamic environments

necessitate continuous execution of these O(n²) operations,

including multiplying weight coefficients by reliability,

competence, and honesty metrics [10]. Traditional software

implementations on general-purpose processors lack the

necessary speed and energy efficiency, especially for

resource-constrained devices. Asymmetric trust evaluations

(e.g., agent A trusts B more than B trusts A) further

complicate computations, requiring modular operation

optimization.

Modular multiplication and addition operations underpin

cryptographic methods (RSA) [11–13], blockchain

technologies [14], and weighted trust metrics. For example,

in robot target allocation algorithms, they are used to

calculate action efficiency and verify transaction integrity

[15]. However, software implementations of such operations

often become bottlenecks due to delays and high energy

consumption, highlighting the need for hardware solutions.

The proposed approach leverages pipelined modular

multiplication, which ensures high performance through

parallel data processing at different computation stages.

Unlike classical multiplication, pipelined implementation

breaks the operation into sequential stages executed in

parallel for different data streams. Applying this method in

robotic agents enhances system resilience against attacks

and ensures deterministic execution times for critical

operations.

Thus, combining reputation-based trust models with

hardware-accelerated modular operations paves the wa y f o r

resilient DCPEs capable of operating under uncertainty and

dynamically adapting to threats. Further research focuses on

optimizing multiplier architectures and their integration into

heterogeneous environments where performance and

security requirements vary by context.

III. DECENTRALIZED TRUST MATRIX UPDATE USING

BLOCKCHAIN TECHNOLOGY

Decentralized trust matrix updates in cyber-physical

environments can be organized through blockchain

technology, ensuring transparency, immutability, and

distributed data storage. Each agent in the environment acts

as a blockchain node, recording interactions, verifying

transactions, and locally computing trust based on consensus

rules. Interactions among agents - such as task execution,

data exchange, or detecting malicious behavior - are

recorded as transactions. These transactions are grouped into

blocks, validated by the network via a chosen consensus

mechanism (e.g., Practical Byzantine Fault Tolerance for

resource-constrained devices [16]), and added to the

distributed ledger. Each block contains the hash of the

previous block, ensuring interaction history integrity.

Practical Byzantine Fault Tolerance (PBFT) is a

consensus algorithm designed to ensure distributed system

resilience against Byzantine failures, where some nodes may

malfunction or act maliciously. PBFT achieves agreement

among nodes through a multi-stage message exchange: a

client sends a request to a primary node, which initiates a

pre-prepare phase by broadcasting a proposal to other

participants. Validator nodes verify the proposal, exchange

confirmations, and finalize the result if a majority (a t least

2/3+1) supports its correctness. This allows the system to

remain operational even with up to f malicious nodes, where

the total number of participants is N≥3f+1. PBFT is

particularly effective in closed networks with a known,

limited number of participants, such as consortium

blockchains or decentralized cyber-physical systems, where

low latency and energy efficiency are critical [18]. Unlike

resource-intensive Proof of Work algorithms, PBFT avoids

complex computations, making it suitable for low-power

devices. However, its scalability diminishes as the number

of nodes increases due to quadratic growth in

communication volume, limiting its applicability in global

networks. In decentralized trust matrices, PBFT ensures

reliable update coordination, maintaining system integrity

and data authenticity even with malicious agents.

Let's consider the Proof of Stake (PoS) consensus

mechanism [19], an alternative to energy-intensive Proof of

Work. Unlike classical algorithms, PoS eliminates the need

for resource-heavy computations by probabilistically

selecting validators based on their stake (ownership) of

cryptographic assets. This significantly reduces system

energy consumption, which is critical for autonomous

DCPE agents operating under resource constraints.

Combined with hardware-accelerated modular operations

via pipelined multipliers, PoS balances security and

efficiency: validators with larger stakes gain increased block

creation rights, but their actions are automatically verified

by other participants through cryptographic signatures. This

minimizes Sybil attack risks and reduces trust matrix update

delays, as validators are incentivized to maintain their

reputation to preserve their stake. However, PoS adoption

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 9, 2025

9

requires addressing initial token distribution and power

centralization challenges, especially in heterogeneous

environments with uneven resource distribution among

agents.

Further fault tolerance and consensus speed improvements

can be achieved via the Tendermint [20] algorithm,

combining PBFT with PoS elements. In Tendermint,

validators participate in a multi-round voting process, where

block finalization requires approval from at least 2/3 of

participants, ensuring Byzantine fault resilience even in

dynamically changing networks. Tendermint integration into

DCPEs enables deterministic, rapid trust matrix updates:

each agent, acting as a network node, participates in

transaction verification, while pipelined modular

multiplication accelerates digital signature and hash checks.

This reduces block formation time to seconds, critical for

real-time systems. Additionally, Tendermint's "slashing"

(penalizing malicious behavior) naturally complements

reputation-based trust models, automatically downgrading

agents attempting to disrupt consensus.

Pipelined modular multiplication accelerates operations

required for RSA digital signature generation and

verification, critical for frequent validator changes and high

transaction volumes. Parallel hardware-level data processing

reduces staking share verification and block formation

delays, ensuring compliance with dynamic environment

time constraints. For Tendermint, where multi-round

consensus requires mass signature verification, pipelined

modular multiplication minimizes computation delays at

each voting stage, enabling block finalization in fractions of

a second. This is especially important for high-frequency

trust matrix updates, where each agent must promptly

confirm its reputation via cryptographically secured

transactions. Moreover, pipelined multipliers' energy

efficiency reduces load on resource-constrained devices,

allowing them to participate in consensus without

compromising autonomy.

IV. COMPUTATION CHALLENGES

Cryptographic operations like RSA digital signature

verification underpin decentralized cyber-physical

environment (DCPE) security but face challenges due to the

computational complexity of modular operations. In RSA

algorithms [21] signatures are generated via modular

exponentiation, which reduces to a sequence of modular

multiplications. For large numbers (2048 bits or more), each

multiplication requires processing hundreds of digits, and

their sequential execution on general-purpose processors

leads to critical delays. For example, RSA-2048 signature

verification involves up to O(n2) elementary operations,

where n is the modulus bit length, creating a quadratic

computation time dependency on key size. In dynamic

DCPEs, where thousands of agents simultaneously update

the trust matrix via signed transactions, this becomes a

bottleneck, limiting system throughput and increasing

energy consumption.

Beyond computation volume, determinism poses a

challenge. Software-based modular multiplication on

general-purpose processors suffers from execution time

variations due to instruction pipeline and caching, making

systems vulnerable to timing attacks. Moreover, resource-

constrained devices like autonomous robots or sensors

cannot sustain high-frequency real-time trust recalculations

using traditional methods. This directly impacts system

resilience: signature verification delays may lead to

accepting outdated or compromised data, undermining trust

matrix integrity.

Pipelined modular multiplication addresses these issues.

Classical multiplication of two n-bit numbers requires O(n2)

operations, as each digit of one number is sequentially

multiplied by all digits of the other. Pipelined architectures

split the operation into n independent stages executed in

parallel for data streams. While the first stage processes the

least significant digit of the current number pair, the next

stage begins working on the previous result for a new pair.

Thus, for k number pairs, execution time is n + k − 1 cycles,

corresponding to linear complexity O(n).

Energy efficiency is achieved through hardware

implementation: each pipeline stage is optimized at the logic

circuit level, eliminating software overhead (e.g., context

switching or caching). This enables devices to perform

cryptographic operations (RSA signature verification) faster

and with lower energy consumption.

V. METHODOLOGY

The RSA algorithm [22] exemplifies modular

multiplication applications in blockchain cryptography and

decentralized cyber-physical systems [23]. RSA operations

involve large prime numbers: two primes p and q are

selected, their product n = p × q is computed, which defines

the modulus of the system. The most important step is

calculating the Euler function φ(n) = (p-1) × (q-1), which

together with the public exponent e forms the basis for

generating the private key d through the modular inversion

operation d ≡ e⁻¹ mod φ(n). RSA cryptographic

transformations rely entirely on modular arithmetic:

message m encryption is c ≡ mᵉ mod n, and decryption is m

≡ cᵈ mod n, where exponentiation is a sequence of modular

multiplications. In DCPEs, these mathematical mechanisms

are applied in several key areas. RSA-based digital

signatures authenticate transactions and messages among

agents, similar to their role in blockchain networks. Data

and participant authenticity verification also relies on

modular arithmetic, particularly crucial in decentralized

settings. For confidential information like trust parameters

or critical commands, public-key encryption protects against

unauthorized access.

These operations' efficiency directly impacts system

performance. For example, frequent trust matrix

recalculations or intensive signed message exchanges

benefit from hardware-implemented modular multiplication

[24, 25] via pipelined multipliers or specialized

cryptographic coprocessors, significantly reducing

computational costs. This is critical for resource-constrained

devices: autonomous robots, sensors, or embedded systems

requiring a balance between processing speed, energy

consumption, and security. Thus, modular multiplication

optimization is not merely a technical task but a key factor

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 9, 2025

10

determining DCPE scalability and reliability.

Pipelined modular multiplication methods combine high

performance with efficient resource use. Their defining

feature is splitting multiplication into sequential stages

executed in parallel for different operands, enabling

minimal-delay data stream processing. In DCPEs requiring

frequent inter-agent trust recalculations, such devices are

indispensable, providing necessary computation speeds

under strict energy constraints.

The authors have developed a pipelined modular

multiplication method as follows. Let

 C ≡ (A·B) mod P, (1)

where A and B are positive integers, 0≤A, B<P, called the

multiplicand and the multiplier, respectively;

P is a positive integer, called the modulus;

C is a positive integer, the product of A and B, reduced

modulo P.

Moreover:

 1 2
1 2 1 0·2 ·2 . . . ·2n n

n nA a a a a− −
− −= + + + + , (2)

 1 2
1 2 1 0·2 ·2 . . . ·2n n

n nB b b b b− −
− −= + + + + , (3)

 1 2
1 2 1 0·2 ·2 . . . ·2n n

n nP p p p p− −
− −= + + + + , (4)

 1 2
1 2 1 0·2 ·2 . . . ·2n n

n nC c c c c− −
− −= + + + + , (5)

where ai, 0, 1i n= − are coefficients taking the value 0 or 1

depending on the value of the number A;

bi, 0, 1i n= − are coefficients taking the value 0 or 1

depending on the value of the number B;

pi, 0, 1i n= − are coefficients taking the value 0 or 1

depending on the value of the modulus P;

ci, 0, 1i n= − are coefficients taking the value 0 or 1

depending on the value of the product C;

n is the number of digits in the representation of numbers.

The task is to find product C modulo P given A and B. The

product of A and B modulo P can be expressed as follows:

() 1 2

1 2

1 0

· mod ·2 ·2

. m

(

 . . ·2 · od)

n n
n nA B P a B a B

a B a B P

− −
− −= + +

+ +
 (6)

Let's introduce the following notation:

 iB  = (2i·B) mod P, where i = (0, …, n -1). (7)

Then the expression can be written as:

 11 1 2 2 1 0 0 . . . · · mod .()n n n n a BB aB a Pa B− − − −
 + + + + (8)

Obviously, that

 0B B = . (9)

Thus, computing expression (6) in pipelined mode reduces

to the following steps.

At pipeline stage 1, compute:

 1 (2) mod ,B B P = (10)

 0 0· .t a B= (11)

At pipeline stage 2, compute:

 2 1(2) mod ,B B P =  (12)

 1 1 1 0() mod .t a B t P=  + (13)

And so on. At pipeline stage n, compute:

 1 1 1 2() mod .n n n nt a B t P− − − −
=  + (14)

The value tn-1 ~ is the desired product.

For a stream of numbers Aj and Bj modulo Pj, input clock-

wise to the pipelined multiplier, j=1, 2, 3, compute:

 Cj  (Aj·Bj) mod Pj. (15)

Let ti,j denote the i-th partial product of the j-th pair of

numbers Aj and Bj in j-th modulo Pj at pipeline stage i,

where i =1, 2, … , n is the pipeline stage number, and

j=1, 2, 3, …, is the device clock cycle. Then:

 ti,j = (ai-1,j· 1,i jB −
 + ti-1,j) mod Pj (16)

where ai-1,j are coefficients in expression (2) for Aj,

 ,i jB = (2i·Bj) mod Pj, (17)

 t0,j = a0,j·Bj. (18)

Obviously, that

 0, j jB B = . (19)

At the n-th clock cycle of the device, at the n-th pipeline

stage as per (16), for the pair of numbers A1 and B1 and

modulus P1 compute an−1,1· 1,1nB − and t1,1:

 tn−1,1 = (an−1,1· 1,1nB − + tn−2,1) mod P1. (20)

The developed method is technically implemented in [26]

and [27]. Consider the hardware implementation of

pipelined modular multiplication.

The pipelined modular multiplier is a device

implementing the above method (see Fig. 1). Key

components include:

― n parallel registers (1.1÷1.n) store intermediate values

during computation.

― n keys (2.1÷2.n) control data flow based on multiplicand

bits.

― (n−1) modulo-2 multipliers (3.1÷3.(n−1)) – perform

number doubling with modulo reduction.

― (n-−1) modulo adders (4.1÷4.(n−1)) sum intermediate

results with modulo reduction.

Input 5 receives multiplicand A, input 6 receives

multiplier B, and input 7 receives the modulus P's inverse

code. Clock signal is input at 9, and the multiplication result

C = (A·B) mod P is output at 8.

The device operates in pipelined mode: each clock cycle

inputs a new number pair A and B, and after n cycles, the

result appears at the output. Simultaneously, n number pa irs

are processed, each at its pipeline stage. This approach

significantly boosts performance compared to sequential

computation.

Aj

Bj

a0, j

Bj a1, j

Bj a0, j

4.1 a2, j

...

5

6

7

7 7

7

8

9

4.n 1

1.3

an 1, jan 1, j, , a1,j an 1, j, , a2,j

1.1

2.n

1.n1.2
3.1

2.1

2.2

3.2

Cj

B/
1, j B/

1, j B/
2, j B/

2, j B/
n-1, jB/

n-1, j

an-1, j

...
Fig. 1. Pipelined modular multiplier

To evaluate the device's efficiency versus the prototype

[28], consider the multiplication time for 100 pairs of 16-bit

numbers. The prototype device, handling 16-bit operands,

includes 8 sequential transformation stages. Let прT be the

time for one stage. When subsequent computations can only

begin after the current one finishes, total processing time for

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 9, 2025

11

100 number pairs is пр800 T .

The proposed device implements pipelined data

processing with 16 sequential stages. Let изT be the time for

one pipeline stage. Under similar load, total computation

time for 100 number pairs is из132 T .

Assuming пр изT T (and in practice, пр изT T), the

speedup B is estimated as the time ratio:

пр

из

800
6.

132

T
B

T


= 



Thus, the proposed device achieves a sixfold speedup

versus the prototype for 100 pairs of 16-bit numbers. As

number size and computation volume increase, the speedup

grows.

VI. PERFORMANCE EVALUATION

The classical multiplication approach involves sequential

operations. For one number pair, the number of stages

(operations) is m . For 16-bit numbers, 8m = . Stage

processing time is прt , and total time for N number pairs is

calculated by the formula :

classic пр.T N m t=  

The pipelined approach uses parallel data processing.

Here, the number of stages (digits) is n (e.g., n = 16). Stage

processing time is изt , and total time for N number pairs is

is determined as:

()pipeline из1 .T N n t= + − 

The pipelined method's speedup over the classical method

is calculated by the formula :

()
прclassic

pipeline из

.
1

N m tT
S

T N n t

 
= =

+ − 

If we assume that пр изt t , the formula is simplified:

.
1

N m
S

N n


=

+ −

In [256] an example with parameters 100N = , 8m = ,

16n = is given. The speedup calculation yields:

()
100 8 800

6.96 7 с учётом округления .
100 16 1 115

S


= =  
+ −

Analyzing speedup dependency on the number of pairs

N . For fixed 16n = and 8m = , the trend is observed in

Fig. 2:

Fig. 2. Speedup vs. Number of pairs

As N increases, speedup approaches 8m = ,

demonstrating asymptotic dependency.

Analyzing speedup dependency on digit count n is

presented in Fig.3. With 100N = and
2

n
m = :

Fig. 3. Speedup vs. Digit count

Increasing n boosts speedup, but growth slows due to the

denominator 1N n+ − .

The formula for calculations is:

,
1

N m
S

N n


=

+ −

where
2

n
m = (for digit count analysis). For example, for

24n = , 50N = :

50 12 600
8.22.

50 24 1 73
S


= = 

+ −

Pipelined architecture achieves significant speedup via

parallel data processing. For 16-bit numbers and 100 pairs,

speedup reaches ~6x. The formula
1

N m
S

N n


=

+ −
 reflects

speedup dependency on pair count N and digit count n .

Graphs show speedup grows with N and n but is

constrained by pipeline structure. For example, as N → ,

speedup approaches m , while increasing n slows growth

due to the denominator.

VII. DISCUSSION

Despite its advantages, deploying pipelined multipliers

for trust computation in decentralized cyber-physical

environments has limitations. The primary technical

constraint is reliance on hardware implementation accuracy

- even minor modular operation errors can distort final trust

metrics, critical in systems where trust influences key

decisions. Additionally, integrating specialized hardware

into existing systems incurs significant overhead, including

agent architecture modifications, new interface

development, and compatibility assurance with existing

protocols. These factors may substantially increase

deployment time and costs, especially in large-scale

heterogeneous environments with diverse agent platforms

and computational capabilities.

Future development prospects extend beyond trust

computation. One promising direction is applying pipelined

multipliers in other DCPE components, particularly

cryptographic algorithms. In systems using homomorphic

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 9, 2025

12

encryption, digital signatures, or zero-knowledge protocols,

hardware-accelerated modular operations could significantly

boost performance while maintaining security. Moreover,

pipelined architectures could benefit distributed machine

learning algorithms requiring efficient matrix operations

over finite fields or IoT systems [29] prioritizing energy

efficiency and high-speed data processing. Further resea rch

could focus on developing universal hardware solutions

dynamically adaptable to various moduli and algorithms,

broadening applicability and easing integration into

heterogeneous computing environments.

VIII. CONCLUSION

Implementing pipelined multiplication methods in

decentralized cyber-physical environments demonstrates

significant potential for optimizing inter-agent trust

computations. The proposed approach enhances

performance via parallel multiplication processing, reduces

trust matrix update delays, and lowers system energy

consumption - critical for resource-constrained autonomous

agents. Hardware-implemented pipelined multipliers

accelerate critical computations (e.g., weighted sums in trust

formulas) and improve security by standardizing operation

execution times, hindering timing attacks.

However, successful integration faces technical

challenges, including hardware accuracy dependencies and

high adaptation costs for existing systems. These limitations

necessitate careful balancing of performance and reliability,

alongside universal interface development for cross-

platform compatibility.

Future research could expand pipelined multiplication

applications beyond trust computation, such as

cryptographic protocols (e.g., finite field operation

acceleration), distributed machine learning, or real-time

systems. Reconfigurable hardware solutions adaptable to

dynamic moduli and contexts could enhance system

flexibility and scalability.

In summary, the proposed methodology confirms that

combining algorithmic optimizations with hardware

acceleration is key to building efficient, secure decentralized

systems. This paves the way for intelligent systems

operating in dynamic, uncertain environments while

maintaining resilience and energy efficiency.

REFERENCES

1. Petrenko V. I. et al. Method of trusted agent interaction in a

decentralized cyber-physical environment based on distributed ledger
technology // Caspian Journal: Management and High Technologies. —
2023. — No. 3 (63). — P. 115.
2. Roig P. J. [et al.]. Modeling an Edge Computing Arithmetic Framework

for IoT Environments // Sensors 2022, Vol. 22, Page 1084. 2022. No. 3
(22). C. 1084.
3. Samofalov K.G., Lutskiy G.M. Fundamentals of the theory of multilevel

pipelined computing systems. — M.: Radio i svyaz, 1989. — 272p.
4. Orton G., Peppard L., Tavares S. A design of a fast pipelined modular
multiplier based on a diminished-radix algorithm // Journal of Cryptology.
1993. No. 4 (6). P. 183–208.

5. Ma C. [et al.]. Trusted AI in Multiagent Systems: An Overview of
Privacy and Security for Distributed Learning // Proceedings of the IEEE.
2023. No. 9 (111). P. 1097–1132.
6. Page J., Zaslavsky A., Indrawan M. A buddy model of security for

mobile agent communities operating in pervasive scenarios // Proceedings
of the Second Workshop on Australasian Information Security, Data

Mining and Web Intelligence, and Software Internationalisation. 2004.
(32). P. 17–25.
7. Zikratov I. A., Zikratova T. V., Lebedev I. S. Trust model of information
security of multi-agent robotic systems with decentralized control //

Scientific and technical bulletin of information technologies, mechanics
and optics. - 2014. - No. 2 (90). - P. 47-52.
8. Zikratov I. A. [et al.]. Construction of a model of trust and reputation for
objects of multi-agent robotic systems with decentralized control //

Scientific and Technical Bulletin of Information Technologies, Mechanics
and Optics. - 2014. - No. 3 (91). - P. 30-38
9. Zikratov I. A. [et al.]. Security model of mobile multi-agent robotic

systems with collective control // Scientific and technical bulletin of
information technologies, mechanics and optics. - 2017. - Vol. 17, No. 3. -
P. 439–449. - DOI: 10.17586/2226-1494-2017-17-3-439-449.
10. Amini M. R., Baidas M. W. Availability-Reliability-Stability Trade-

Offs in Ultra-Reliable Energy-Harvesting Cognitive Radio IoT Networks //
IEEE Access. 2020. (8). C. 82890–82916.
11. Ullah S. [et al.]. Elliptic Curve Cryptography; Applications, challenges,
recent advances, and future trends: A comprehensive survey // Computer

Science Review. 2023. (47). C. 100530.
12. Singh S., Maakar S. K., Kumar S. A Performance Analysis of DES and
RSA Cryptography 2013.
13. Lysyanskaya A. Security analysis of RSA-BSSA 2023.P. 251–280.

14. Naser S. M. Cryptography: From the ancient history to now, it’s
applications and a new complete numerical model // International journal of
mathematics and statistics studies. 2021. No. 3 (9). P. 11–30.
15. Fryer D. [et al.]. Checking the integrity of transactional mechanisms //

ACM Transactions on Storage. 2014. No. 4 (10).
16. Bohm H., Distler T., Wagemann P. TinyBFT: Byzantine Fault-Tolerant
Replication for Highly Resource-Constrained Embedded Systems // 2024

IEEE 30th Real-Time and Embedded Technology and Applications
Symposium (RTAS). 2024. P. 225–238.
17. Wang Y., Zhong M., Cheng T. Research on PBFT consensus algorithm
for grouping based on feature trust // Scientific Reports 2022 12:1. 2022.

No. 1 (12). P. 1–12.
18. Ali A. [et al.]. Securing Secrets in Cyber-Physical Systems: A Cutting-
Edge Privacy Approach with Consortium Blockchain // Sensors 2023, Vol.
23, Page 7162. 2023. No. 16 (23). P. 7162.

19. Chinnam R. K. [et al.]. Enhancing IoT Security and Efficiency with
DPOS Enabled Blockchain and IPFS Integration // 2024 2nd International
Conference Computational and Characterization Techniques in Engineering
and Sciences, IC3TES 2024. 2024.

20. Amoussou-Guenou Y. [et al.]. Dissecting Tendermint // Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics). 2019. (11704 LNCS). P.

166–182.
21. Gennaro R., Krawczyk H., Rabin T. RSA-based undeniable signatures
// Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics). 1997. (1294).

P. 132–149.
22. Gupta N., Jain A. K. RSA Based Consensus Algorithm for Lightweight
Private Blockchain Network // ITM Web of Conferences. 2023. (54). P.
03003.

23. Milanov E. [et al.]. The RSA algorithm // RSA laboratories. 2009.No. 2
(42). P. 1–11.
24. Pavan Kumar C. H., Sivani K. Implementation of efficient parallel
prefix adders for residue number system // International Journal of

Computing and Digital Systems. 2015. No. 4 (4). P. 295–300.
25. Ma C. [et al.]. Trusted AI in Multiagent Systems: An Overview of
Privacy and Security for Distributed Learning // Proceedings of the IEEE.

2023. No. 9 (111). P. 1097–1132.
26. Petrenko V. I. Pipelined modulo multiplier // Patent for invention
2797164 C1, Published 07/19/2021 Bulletin No. 20.
27. Petrenko V. I., Sutormin M. P., Puiko D. D. Pipelined modulo

multiplier // Patent for invention 2797164 C1, Published 07/19/2021
Bulletin No. 20.
28. Petrenko V. I. Modulo multiplier // Patent for invention 2751802 C1,
Published 07/19/2021 Bulletin No. 20.

29. Alzubi J. A. Blockchain-based Lamport Merkle digital signature:
authentication tool in IoT healthcare // Computer Communications. 2021.
(170).P. 200–208.

