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Abstract — Modern decentralized cyber-physical 

environments (DCPEs) are dynamic environments where 

ensuring trust between autonomous agents is a critical task, 

requiring efficient methods for trust computation between 
agents under resource constraints. This study aims to reduce 

the computational costs in trust evaluation, caused by the 

quadratic complexity of traditional methods, limiting their 

applicability in resource-constrained devices. To address this 

issue, the paper proposes pipelining modular multiplication 
operations to accelerate computations. This approach enables 

parallel data processing, reduces energy consumption, and 

ensures deterministic operation execution times, which are 

crucial for dynamic environments. The integration of pipelined 

modular multiplication operations, implemented at the 
hardware level, into a trusted interaction model, as well as 

their application in combination with blockchain technologies 

for decentralized updating of the trust matrix, is considered. 

Experimental results demonstrate a six-fold acceleration of 

modular multiplication operations compared to classical 
methods, as well as enhanced system resilience against attacks. 

The implementation of the proposed method opens up new 

possibilities for creating scalable and energy-efficient DCPEs 

capable of operating in highly dynamic and uncertain 

conditions. 

 
Keywords — decentralized cyber-physical systems, pipelined 

multipliers, modular operations, trust matrix, hardware 

acceleration, blockchain, energy efficiency. 

I. INTRODUCTION 

Modern decentralized cyber-physical environments 

(DCPEs) [1] are complex dynamic systems where multiple 

autonomous entities - both physical (robots, sensors) and 

virtual (software agents) - interact. A key challenge in such 

systems is ensuring trusted interactions among agents, 

particularly in the absence of centralized control. Trust here 

serves as a quantitative measure of confidence in the 

reliability, competence, and predictability of other system 

participants, computed based on multitude of factors such as 

interaction history and current context. However, as DCPEs 

scale and the number of interactions grows, traditional trust 

assessment methods face high computational costs, which 
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are especially critical for resource-constrained devices [2], 

such as mobile robots or embedded systems. 

High computational costs are due to the need for frequen t  

recalculation of trust levels in real time, which requires 

performing numerous modular operations, including 

multiplication and addition with weighting coefficients. 

These computational operations are the basis for weighted 

trust metrics, but their software implementation on general-

purpose processors often proves to be too slow and energy-

intensive. This paper proposes solving these problems 

through pipelined modular multiplication operations 

implemented at the hardware level. 

Pipelined modular multiplication operations are highly 

efficient computational methods optimized for sequential 

modular multiplications with minimal delays and resource 

usage. Their key advantage lies in parallel computation 

organization [3, 4], significantly accelerating data 

processing compared to sequential algorithms. Integrating 

such methods into the computational systems of robotic 

agents optimizes critical operations without increasing the 

load on the central processor. 

The scientific novelty of this work lies in the application 

of pipelined multiplication algorithms in a trusted 

interaction model [5], which has not been previously 

explored in the context of decentralized cyber-physical 

systems. The proposed approach not only speeds up 

computations but also reduces energy consumption, which is 

particularly important for autonomous agents operating 

under resource constraints. Additionally, hardware 

implementation enhances resilience against potential attacks 

on system software components. 

The subsequent sections of the paper will detail the 

architecture of the proposed solution, including the 

formalization of trust computation using pipelined 

multipliers, methods for their integration into agents, and 

experimental results validating the approach's effectiveness. 

II. CURRENT STATE OF THE ART 

Decentralized cyber-physical environments (DCPEs) 

consist of interacting physical and virtual entities - robots, 

sensors, software agents, and computational nodes - united 

to achieve common goals. Their defining feature is the 

absence of centralized control: interactions among entities 

are governed by dynamic connections, and the system 

structure adapts to environmental changes and participant 

actions. Each entity has unique attributes (identifier, 

location, resource) that determine its role, beha vior, and 
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resource access rights. Active subjects (agents) initiate 

actions and make decisions, while passive entities (data, 

devices) serve as operation targets. 

Trust is the basis of interaction in decentralized 

architectures. It reflects confidence in the reliability, 

competence, and predictability of participants, formed 

through analyzing their actions, interaction history, and 

context. For example, in multi-agent robotic systems 

(MARS), the introduction of rogue robots or misinformation 

dissemination necessitates algorithms capable of 

dynamically assessing agents' usefulness to the collective. 

Trust models like the Buddy Security Model (BSM) [6] and 

reputation systems offer solutions through iterative metric 

updates. In the works of Zikratov [7–9] trust is defined as 

the willingness to interact based on an agent's actions, while 

reputation is a stable assessment of its qualities, 

distinguishing legitimate participants from malicious ones. 

Let's consider the main computational challenges that 

arise when calculating trust. Algorithmic complexity in this 

context characterizes the mathematically expressed 

dependence of the required computational resources on the 

number of input data . The main complexity arises from the 

high load of real-time trust matrix recalculations. This 

complexity is expressed as O(n²), indicating quadratic 

growth in required computations as the number of agents n 

increases. In practice, this leads to exponential 

computational load growth even with a small increase in 

participants, as each agent's trust relationships with all 

others must be calculated. Dynamic environments 

necessitate continuous execution of these O(n²) operations, 

including multiplying weight coefficients by reliability, 

competence, and honesty metrics [10]. Traditional software 

implementations on general-purpose processors lack the 

necessary speed and energy efficiency, especially for 

resource-constrained devices. Asymmetric trust evaluations 

(e.g., agent A trusts B more than B trusts A) further 

complicate computations, requiring modular operation 

optimization. 

Modular multiplication and addition operations underpin 

cryptographic methods (RSA) [11–13], blockchain 

technologies [14], and weighted trust metrics. For example, 

in robot target allocation algorithms, they are used to 

calculate action efficiency and verify transaction integrity 

[15]. However, software implementations of such operations 

often become bottlenecks due to delays and high energy 

consumption, highlighting the need for hardware solutions. 

The proposed approach leverages pipelined modular 

multiplication, which ensures high performance through 

parallel data processing at different computation stages. 

Unlike classical multiplication, pipelined implementation 

breaks the operation into sequential stages executed in 

parallel for different data streams. Applying this method in 

robotic agents enhances system resilience against attacks 

and ensures deterministic execution times for critical 

operations. 

Thus, combining reputation-based trust models with 

hardware-accelerated modular operations paves the wa y  f o r 

resilient DCPEs capable of operating under uncertainty and 

dynamically adapting to threats. Further research focuses on  

optimizing multiplier architectures and their integration into 

heterogeneous environments where performance and 

security requirements vary by context. 

III. DECENTRALIZED TRUST MATRIX UPDATE USING 

BLOCKCHAIN TECHNOLOGY 

Decentralized trust matrix updates in cyber-physical 

environments can be organized through blockchain 

technology, ensuring transparency, immutability, and 

distributed data storage. Each agent in the environment acts 

as a blockchain node, recording interactions, verifying 

transactions, and locally computing trust based on consensus 

rules. Interactions among agents - such as task execution, 

data exchange, or detecting malicious behavior - are 

recorded as transactions. These transactions are grouped into 

blocks, validated by the network via a chosen consensus 

mechanism (e.g., Practical Byzantine Fault Tolerance for 

resource-constrained devices [16]), and added to the 

distributed ledger. Each block contains the hash of the 

previous block, ensuring interaction history integrity. 

Practical Byzantine Fault Tolerance (PBFT) is a 

consensus algorithm designed to ensure distributed system 

resilience against Byzantine failures, where some nodes may 

malfunction or act maliciously. PBFT achieves agreement 

among nodes through a multi-stage message exchange: a 

client sends a request to a primary node, which initiates a 

pre-prepare phase by broadcasting a proposal to other 

participants. Validator nodes verify the proposal, exchange 

confirmations, and finalize the result if a  majority (a t least 

2/3+1) supports its correctness. This allows the system to 

remain operational even with up to f malicious nodes, where 

the total number of participants is N≥3f+1. PBFT is 

particularly effective in closed networks with a known, 

limited number of participants, such as consortium 

blockchains or decentralized cyber-physical systems, where 

low latency and energy efficiency are critical [18]. Unlike 

resource-intensive Proof of Work algorithms, PBFT avoids 

complex computations, making it suitable for low-power 

devices. However, its scalability diminishes as the number 

of nodes increases due to quadratic growth in 

communication volume, limiting its applicability in global 

networks. In decentralized trust matrices, PBFT ensures 

reliable update coordination, maintaining system integrity 

and data authenticity even with malicious agents. 

Let's consider the Proof of Stake (PoS) consensus 

mechanism [19], an alternative to energy-intensive Proof of 

Work. Unlike classical algorithms, PoS eliminates the need 

for resource-heavy computations by probabilistically 

selecting validators based on their stake (ownership) of 

cryptographic assets. This significantly reduces system 

energy consumption, which is critical for autonomous 

DCPE agents operating under resource constraints. 

Combined with hardware-accelerated modular operations 

via pipelined multipliers, PoS balances security and 

efficiency: validators with larger stakes gain increased block 

creation rights, but their actions are automatically verified 

by other participants through cryptographic signatures. This 

minimizes Sybil attack risks and reduces trust matrix update 

delays, as validators are incentivized to maintain their 

reputation to preserve their stake. However, PoS adoption 
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requires addressing initial token distribution and power 

centralization challenges, especially in heterogeneous 

environments with uneven resource distribution among 

agents. 

Further fault tolerance and consensus speed improvements 

can be achieved via the Tendermint [20] algorithm, 

combining PBFT with PoS elements. In Tendermint, 

validators participate in a multi-round voting process, where 

block finalization requires approval from at least 2/3 of 

participants, ensuring Byzantine fault resilience even in 

dynamically changing networks. Tendermint integration into 

DCPEs enables deterministic, rapid trust matrix updates: 

each agent, acting as a network node, participates in 

transaction verification, while pipelined modular 

multiplication accelerates digital signature and hash checks. 

This reduces block formation time to seconds, critical for 

real-time systems. Additionally, Tendermint's "slashing" 

(penalizing malicious behavior) naturally complements 

reputation-based trust models, automatically downgrading 

agents attempting to disrupt consensus. 

Pipelined modular multiplication accelerates operations 

required for RSA digital signature generation and 

verification, critical for frequent validator changes and high 

transaction volumes. Parallel hardware-level data processing 

reduces staking share verification and block formation 

delays, ensuring compliance with dynamic environment 

time constraints. For Tendermint, where multi-round 

consensus requires mass signature verification, pipelined 

modular multiplication minimizes computation delays at 

each voting stage, enabling block finalization in fractions of 

a second. This is especially important for high-frequency 

trust matrix updates, where each agent must promptly 

confirm its reputation via cryptographically secured 

transactions. Moreover, pipelined multipliers' energy 

efficiency reduces load on resource-constrained devices, 

allowing them to participate in consensus without 

compromising autonomy. 

IV. COMPUTATION CHALLENGES 

Cryptographic operations like RSA digital signature 

verification underpin decentralized cyber-physical 

environment (DCPE) security but face challenges due to the 

computational complexity of modular operations. In RSA 

algorithms [21] signatures are generated via modular 

exponentiation, which reduces to a sequence of modular 

multiplications. For large numbers (2048 bits or more), each 

multiplication requires processing hundreds of digits, and 

their sequential execution on general-purpose processors 

leads to critical delays. For example, RSA-2048 signature 

verification involves up to O(n2) elementary operations, 

where n is the modulus bit length, creating a quadratic 

computation time dependency on key size. In dynamic 

DCPEs, where thousands of agents simultaneously update 

the trust matrix via signed transactions, this becomes a 

bottleneck, limiting system throughput and increasing 

energy consumption.  

Beyond computation volume, determinism poses a 

challenge. Software-based modular multiplication on 

general-purpose processors suffers from execution time 

variations due to instruction pipeline and caching, making 

systems vulnerable to timing attacks. Moreover, resource-

constrained devices like autonomous robots or sensors 

cannot sustain high-frequency real-time trust recalculations 

using traditional methods. This directly impacts system 

resilience: signature verification delays may lead to 

accepting outdated or compromised data, undermining trust 

matrix integrity. 

Pipelined modular multiplication addresses these issues. 

Classical multiplication of two n-bit numbers requires O(n2) 

operations, as each digit of one number is sequentially 

multiplied by all digits of the other. Pipelined architectures 

split the operation into n independent stages executed in 

parallel for data streams. While the first stage processes the 

least significant digit of the current number pair, the next 

stage begins working on the previous result for a new pair. 

Thus, for k number pairs, execution time is n + k − 1 cycles, 

corresponding to linear complexity O(n). 

Energy efficiency is achieved through hardware 

implementation: each pipeline stage is optimized at the logic 

circuit level, eliminating software overhead (e.g., context 

switching or caching). This enables devices to perform 

cryptographic operations (RSA signature verification) faster 

and with lower energy consumption. 

V. METHODOLOGY  

The RSA algorithm [22] exemplifies modular 

multiplication applications in blockchain cryptography and 

decentralized cyber-physical systems [23]. RSA operations 

involve large prime numbers: two primes p and q are 

selected, their product n = p × q is computed, which defines 

the modulus of the system. The most important step is 

calculating the Euler function φ(n) = (p-1) × (q-1), which 

together with the public exponent e forms the basis for 

generating the private key d through the modular inversion 

operation d ≡ e⁻¹ mod φ(n). RSA cryptographic 

transformations rely entirely on modular arithmetic: 

message m encryption is c ≡ mᵉ mod n, and decryption is m 

≡ cᵈ mod n, where exponentiation is a sequence of modular 

multiplications. In DCPEs, these mathematical mechanisms 

are applied in several key areas. RSA-based digital 

signatures authenticate transactions and messages among 

agents, similar to their role in blockchain networks. Data 

and participant authenticity verification also relies on 

modular arithmetic, particularly crucial in decentralized 

settings. For confidential information like trust parameters 

or critical commands, public-key encryption protects against 

unauthorized access. 

These operations' efficiency directly impacts system 

performance. For example, frequent trust matrix 

recalculations or intensive signed message exchanges 

benefit from hardware-implemented modular multiplication 

[24, 25] via pipelined multipliers or specialized 

cryptographic coprocessors, significantly reducing 

computational costs. This is critical for resource-constrained 

devices: autonomous robots, sensors, or embedded systems 

requiring a balance between processing speed, energy 

consumption, and security. Thus, modular multiplication 

optimization is not merely a technical task but a key factor 
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determining DCPE scalability and reliability. 

Pipelined modular multiplication methods combine high 

performance with efficient resource use. Their defining 

feature is splitting multiplication into sequential stages 

executed in parallel for different operands, enabling 

minimal-delay data stream processing. In DCPEs requiring 

frequent inter-agent trust recalculations, such devices are 

indispensable, providing necessary computation speeds 

under strict energy constraints. 

The authors have developed a pipelined modular 

multiplication method as follows.  Let 

 C ≡ (A·B) mod P, (1) 

where A and B are positive integers, 0≤A, B<P, called the 

multiplicand and the multiplier, respectively; 

P is a  positive integer, called the modulus;  

C is a  positive integer, the product of  A and B, reduced 

modulo P. 

Moreover: 

 1 2
1 2 1 0·2 ·2  . . . ·2n n

n nA a a a a− −
− −= + + + + , (2) 

 1 2
1 2 1 0·2 ·2  . . . ·2n n

n nB b b b b− −
− −= + + + + , (3) 

 1 2
1 2 1 0·2 ·2 . . . ·2n n

n nP p p p p− −
− −= + + + + , (4) 

 1 2
1 2 1 0·2 ·2  . . . ·2n n

n nC c c c c− −
− −= + + + + ,  (5) 

where ai, 0, 1i n= −  are coefficients taking the value 0 or 1 

depending on the value of the number A;  

bi, 0, 1i n= −  are coefficients taking the value 0 or 1 

depending on the value of the number B;  

pi, 0, 1i n= −  are coefficients taking the value 0 or 1 

depending on the value of the modulus P;  

ci, 0, 1i n= −  are coefficients taking the value 0 or 1 

depending on the value of the product C; 

n is the number of digits in the representation of numbers. 

The task is to find product C modulo P given A and B. The 

product of A and B modulo P can be expressed as follows: 

 
( ) 1 2

1 2

1 0

·  mod  ·2 ·2   

. m

(

 . . ·2 ·  od)  

n n
n nA B P a B a B

a B a B P

− −
− −= + +

+ +
 (6) 

Let's introduce the following notation: 

  iB  = (2i·B) mod P, where i = (0, …, n -1). (7) 

Then the expression can be written as: 

 11 1 2 2 1 0 0   . . .  ·  ·  mod .( )n n n n a BB aB a Pa B− − − −
 + + + + (8) 

Obviously, that 

 0B B = . (9) 

Thus, computing expression (6) in pipelined mode reduces 

to the following steps. 

At pipeline stage 1, compute: 

 1 (2 ) mod ,B B P =  (10) 

 0 0· .t a B=  (11) 

At pipeline stage 2, compute: 

 2 1(2 ) mod ,B B P =   (12) 

 1 1 1 0( ) mod .t a B t P=  +  (13) 

And so on. At pipeline stage n, compute: 

 1 1 1 2( ) mod .n n n nt a B t P− − − −
=  +  (14) 

The value tn-1 ~ is the desired product. 

For a stream of numbers Aj and Bj modulo Pj, input clock-

wise to the pipelined multiplier, j=1, 2, 3, compute: 

 Cj   (Aj·Bj) mod Pj. (15) 

Let ti,j denote the i-th partial product of the j-th pair of 

numbers Aj and Bj in j-th modulo Pj at pipeline stage i, 

where i =1, 2, … , n is the pipeline stage number, and 

j=1, 2, 3, …,  is the device clock cycle. Then: 

 ti,j = (ai-1,j· 1,i jB −
  + ti-1,j ) mod Pj (16) 

where ai-1,j are coefficients in expression (2) for Aj, 

 ,i jB  = (2i·Bj) mod Pj, (17) 

 t0,j = a0,j·Bj. (18) 

Obviously, that 

 0, j jB B = . (19) 

At the n-th clock cycle of the device, at the n-th pipeline 

stage as per (16), for the pair of numbers A1 and B1 and 

modulus P1 compute an−1,1· 1,1nB −  and t1,1: 

 tn−1,1 = (an−1,1· 1,1nB − + tn−2,1) mod P1. (20) 

The developed method is technically implemented in [26] 

and [27]. Consider the hardware implementation of 

pipelined modular multiplication.  

The pipelined modular multiplier is a  device 

implementing the above method (see Fig. 1). Key 

components include: 

― n parallel registers (1.1÷1.n) store intermediate values 

during computation. 

― n keys (2.1÷2.n) control data flow based on multiplicand 

bits. 

― (n−1) modulo-2 multipliers (3.1÷3.(n−1)) – perform 

number doubling with modulo reduction. 

― (n-−1) modulo adders (4.1÷4.(n−1)) sum intermediate 

results with modulo reduction. 

Input 5 receives multiplicand A, input 6 receives 

multiplier B, and input 7 receives the modulus P's inverse 

code. Clock signal is input at 9, and the multiplication result 

C = (A·B) mod P is output at 8. 

The device operates in pipelined mode: each clock cycle 

inputs a new number pair A and B, and after n cycles, the 

result appears at the output. Simultaneously, n number pa irs 

are processed, each at its pipeline stage. This approach 

significantly boosts performance compared to sequential 

computation.  

Aj

Bj

a0, j

Bj a1, j

Bj a0, j

4.1 a2, j

...

5

6

7

7 7

7

8

9

4.n 1

1.3

an 1, jan 1, j,  , a1,j an 1, j,  , a2,j

1.1

2.n

1.n1.2
3.1

2.1

2.2

3.2

Cj

B/
1, j B/

1, j B/
2, j B/

2, j B/
n-1, jB/

n-1, j

an-1, j

...  
Fig. 1. Pipelined modular multiplier 

To evaluate the device's efficiency versus the prototype 

[28], consider the multiplication time for 100 pairs of 16-bit 

numbers. The prototype device, handling 16-bit operands, 

includes 8 sequential transformation stages. Let прT be the 

time for one stage. When subsequent computations can only  

begin after the current one finishes, total processing time for 
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100 number pairs is пр800 T .  

The proposed device implements pipelined data 

processing with 16 sequential stages. Let изT  be the time for 

one pipeline stage. Under similar load, total computation 

time for 100 number pairs is из132 T .  

Assuming пр изT T  (and in practice, пр изT T ), the 

speedup B is estimated as the time ratio: 

пр

из

800
6.

132

T
B

T


= 


 

Thus, the proposed device achieves a sixfold speedup 

versus the prototype for 100 pairs of 16-bit numbers. As 

number size and computation volume increase, the speedup 

grows. 

VI. PERFORMANCE EVALUATION 

The classical multiplication approach involves sequential 

operations. For one number pair, the number of stages 

(operations) is m . For 16-bit numbers, 8m = . Stage 

processing time is прt , and total time for N number pairs is 

calculated by the formula : 

classic пр.T N m t=    

The pipelined approach uses parallel data processing. 

Here, the number of stages (digits) is n  (e.g., n = 16). Stage 

processing time is изt , and total time for N  number pairs is 

is determined as: 

( )pipeline из1 .T N n t= + −   

The pipelined method's speedup over the classical method 

is calculated by the formula  : 

( )
прclassic

pipeline из

.
1

N m tT
S

T N n t

 
= =

+ − 
 

If we assume that пр изt t , the formula is simplified: 

.
1

N m
S

N n


=

+ −
 

In [256] an example with parameters 100N = , 8m = , 

16n =  is given. The speedup calculation yields: 

( )
100 8 800

6.96 7 с учётом округления .
100 16 1 115

S


= =  
+ −

 

Analyzing speedup dependency on the number of pairs 

N . For fixed 16n =  and 8m = , the trend is observed in 

Fig. 2:  

 
Fig. 2. Speedup vs. Number of pairs 

As N  increases, speedup approaches 8m = , 

demonstrating asymptotic dependency. 

Analyzing speedup dependency on digit count n  is 

presented in Fig.3. With 100N =  and 
2

n
m = : 

 
Fig. 3. Speedup vs. Digit count 

Increasing n  boosts speedup, but growth slows due to the 

denominator 1N n+ − . 

The formula for calculations is: 

,
1

N m
S

N n


=

+ −
 

where 
2

n
m =  (for digit count analysis). For example, for 

24n = , 50N = : 

50 12 600
8.22.

50 24 1 73
S


= = 

+ −
 

Pipelined architecture achieves significant speedup via 

parallel data processing. For 16-bit numbers and 100 pairs, 

speedup reaches ~6x. The formula 
1

N m
S

N n


=

+ −
 reflects 

speedup dependency on pair count N  and digit count n . 

Graphs show speedup grows with N  and n  but is 

constrained by pipeline structure. For example, as N → , 

speedup approaches m , while increasing n slows growth 

due to the denominator. 

VII. DISCUSSION 

Despite its advantages, deploying pipelined multipliers 

for trust computation in decentralized cyber-physical 

environments has limitations. The primary technical 

constraint is reliance on hardware implementation accuracy 

- even minor modular operation errors can distort final trust 

metrics, critical in systems where trust influences key 

decisions. Additionally, integrating specialized hardware 

into existing systems incurs significant overhead, including 

agent architecture modifications, new interface 

development, and compatibility assurance with existing 

protocols. These factors may substantially increase 

deployment time and costs, especially in large-scale 

heterogeneous environments with diverse agent platforms 

and computational capabilities. 

Future development prospects extend beyond trust 

computation. One promising direction is applying pipelined 

multipliers in other DCPE components, particularly 

cryptographic algorithms. In systems using homomorphic 
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encryption, digital signatures, or zero-knowledge protocols, 

hardware-accelerated modular operations could significantly  

boost performance while maintaining security. Moreover, 

pipelined architectures could benefit distributed machine 

learning algorithms requiring efficient matrix operations 

over finite fields or IoT systems [29] prioritizing energy 

efficiency and high-speed data processing. Further resea rch 

could focus on developing universal hardware solutions 

dynamically adaptable to various moduli and algorithms, 

broadening applicability and easing integration into 

heterogeneous computing environments.  

VIII. CONCLUSION 

Implementing pipelined multiplication methods in 

decentralized cyber-physical environments demonstrates 

significant potential for optimizing inter-agent trust 

computations. The proposed approach enhances 

performance via parallel multiplication processing, reduces 

trust matrix update delays, and lowers system energy 

consumption - critical for resource-constrained autonomous 

agents. Hardware-implemented pipelined multipliers 

accelerate critical computations (e.g., weighted sums in trust 

formulas) and improve security by standardizing operation 

execution times, hindering timing attacks. 

However, successful integration faces technical 

challenges, including hardware accuracy dependencies and 

high adaptation costs for existing systems. These limitations 

necessitate careful balancing of performance and reliability, 

alongside universal interface development for cross-

platform compatibility. 

Future research could expand pipelined multiplication 

applications beyond trust computation, such as 

cryptographic protocols (e.g., finite field operation 

acceleration), distributed machine learning, or real-time 

systems. Reconfigurable hardware solutions adaptable to 

dynamic moduli and contexts could enhance system 

flexibility and scalability. 

In summary, the proposed methodology confirms that 

combining algorithmic optimizations with hardware 

acceleration is key to building efficient, secure decentralized 

systems. This paves the way for intelligent systems 

operating in dynamic, uncertain environments while 

maintaining resilience and energy efficiency. 
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