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 

Abstract—This study is dedicated to describing an algorithm 

for implementation cross-lingual embeddings to extract 

chemical structures from texts in both Russian and English. 

The proposed algorithm focuses on fine-tuning of pre-trained 

models based on transformer architecture. After analyzing 

existing models, mBERT and LaBSE were selected. The 

training datasets for these models included texts related to 

chemistry and adjacent fields of science. Fine-tuning was done  

using a collected set of scientific articles and patent texts in 

Russian and English. For English, the ChemProt corpus was 

also used. The model was trained on tasks such as masked 

language modeling and entity recognition. Comparisons were 

made with several models, including BioBERT. The results of 

the experiments showed that the proposed implementation of 

embeddings more effectively solve the task of recognition 

chemical structure names in texts in both Russian and English.  

 

Keywords—Embeddings; transformer architecture; 

information extraction; chemical structures. 

 

I. INTRODUCTION 

Methods for extracting information from texts across 

various domains (chemistry, biochemistry, crystallography, 

medicine) are fundamental in creating professional tools for 

automating searches through large, heterogeneous document 

collections (patents, scientific publications, dissertations, 

clinical trial results). At the same time, training such 

methods requires the availability of annotated text corpora, 

whose creation is a labor-intensive process due to the high 

complexity of annotation. Addressing this challenge requires 

the involvement of highly qualified specialists in the 

respective fields. As a result, such methods are 

underdeveloped for many languages except English, and 

developing general approaches to creating these methods  
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under conditions of limited linguistic resources is of 

significant scientific importance. 

Most models (except domain-specific ones) are trained on 

general datasets. This means that such corpora typically 

consist of texts from news, various genres of literature, as 

well as internet resources and encyclopedias. In our study, 

we address the problem of developing algorithms for cross-

lingual information extraction from texts in Russian and 

English in the domains of chemistry, biochemistry, and 

related fields. Unfortunately, the share of data from such 

domains in standard datasets is extremely small due to the 

specific nature of the knowledge domain. Solving these tasks 

requires domain-specific fine-tuning of models to correctly 

interpret domain information. Without such refinements, 

even the largest and most advanced models will not be able 

to extract and correctly interpret context from specialized 

information. One of the stages in training cross-lingual 

models for entity extraction from texts involves pre-training 

the model to build embeddings. 

To solve this task, we focused on models that could be 

fine-tuned on our dataset. Several approaches and models 

were considered for solving the problem posed in our 

research. The first approach was the application of Bag-Of-

Words and Skipgram models [1], as they represent some of 

the earliest successful examples of implementing cross-

lingual embeddings. Additionally, various modifications of 

convolutional neural networks (CNNs) [2] and recurrent 

neural networks (RNNs) [3] were applied. However, our 

preliminary experiments showed that these approaches were 

highly inefficient. Therefore, the main interest was in 

transformer-based models [4]. Two models were selected for 

fine-tuning, and their training datasets included texts from 

the domains of chemistry, biochemistry, and related fields. 

An additional dataset was collected for fine-tuning. 

II. DATA COLLECTION 

The search for texts was conducted using the SciApp 

digital platform for aggregation and analysis of scientific and 

technical information [5]. The search for Russian-language 

texts was performed across the following resources: 

cyberleninka.org, FIPS. Inventions, Dissertation Abstracts, 

Russian Scientific Conferences, and Russian Journals. For 

English-language texts: PubMed, foreign journals, USPTO 

patents, and Eurasian patents from EAPO. The search query 

consisted of one term from a list of terms denoting types of 

interactions between a chemical substance and a protein. 

The list was based on an analysis of representative scientific 
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texts on the subject and included interaction types most 

frequently mentioned by authors, such as activator, agonist, 

inhibitor, antagonist, cofactor, regulator, modulator, and 

substrate. As an additional step, when expanding the 

English-language dataset, a filter was applied to select 

USPTO patents that had Russian patents in the same patent 

family. To automate this process, semi-structured patent 

descriptions in XML format were downloaded from the 

USPTO portal for the period from 2002 to 2022. Then, 

using the numbers of the identified patents, records with 

references to Russian patents  

Fig. 1: An example of annotation 

 

The active learning process involves further annotating 

the most difficult examples for the model to recognize and 

subsequently fine-tuning the model on those examples. 

These textual examples are identified either by assessing the 

probability of their belonging to target classes or by 

evaluating the distance between the vector representation of 

the object and the vector representation of the target class 

centroid. 

Overall, the algorithm consists of two major blocks (Fig. 

2.1): 

 Text annotation block. 

 Model fine-tuning block. 

The text annotation block comprises the BRAT annotator, 

which receives texts for annotation from the model 

(identified during the active learning process) and an oracle 

(expert). It forms pairs of annotated files (text + annotation) 

for the next step of model training. 

The model fine-tuning block receives new examples for 

annotation from the pool of unannotated texts, retrieves 

annotated data from the annotation module, and ensures an 

iterative process of model retraining. This block consists of: 

 A set of unannotated texts. 

 A text preprocessing step. 

 A sub-block for communication with the annotator. 

 A model retraining step. 

 An active learning sub-block. 

 A step for identifying texts for expert annotation. 

 A step for evaluating model performance. 

For active learning, the Mahalanobis distance on the 

spectral-normalized network was used. The Mahalanobis 

distance is a generalization of Euclidean distance that in the 

<priority-claims> section were selected. Experts 

subsequently chose articles relevant to the topic from the 

search results. The English-language texts were further 

expanded using the ChemProt corpus [6]. Additionally, the 

dataset was enlarged by applying a function to search for 

similar documents. Text annotation was carried out by 

experts using active learning methods. Fig. 1 shows an 

example of the annotation process. 

 

 

 

 

accounts for the spread of instances from the training set 

across different directions in feature space. Uncertainty is 

measured by calculating the Mahalanobis distance between a 

test instance and the nearest class-conditional Gaussian 

distribution: 

 
 

where hi is the hidden representation of the i-th instance, 

c is the centroid of class c, and Σ is the covariance matrix 

for the hidden representations of the training instances. 

 

Additionally, spectral normalization of the weight matrix 

in the linear layer of the "Transformer" classification block 

was performed. At each training step, the spectral norm  is 

estimated using the power iteration method: 

 

 
 

This yields the normalized weight matrix: 

 

 
 

In the final step, hidden representations are computed 

using the normalized matrix 

 

 
 

and are used to calculate the Mahalanobis distance. 
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As a result, more than 2,000 English-language texts with a 

total word count of over 6 million were selected, along with 

over 1,500 Russian-language texts of similar size. Of these, 

661 English-language texts were patents that had Russian-

language equivalents. 

III. MODEL SELECTION 

The following popular models were included in the 

analyzed set of models: mBERT [7], XLM-RoBERTa [8], 

mBART [9] (although generative, it was considered to 

expand the list), and LaBSE [10, 11].  

In addition to these models, the following were analyzed: 

1. ERNIE-m – this model is designed for aligning 

embeddings across selected languages, requiring a 

large corpus of texts for each language [12]. 

2. LASER (Language-Agnostic Sentence 

Representations) – a library with source code that 

calculates embeddings using multilingual text 

corpora, supporting over 200 languages. According 

to the authors, the model generalizes data to 

languages not used during training for specific tasks 

[13]. 

3. VECO – an encoder-type model primarily used for 

generating texts in different languages, including 

cross-lingual generation [14]. 

4. FILTER – an enhanced merging method that takes 

cross-lingual data as input for fine-tuning XLM. 

Specifically, FILTER first encodes the text input in 

the source language and its translation into the 

target language independently in the surface layers, 

then performs cross-lingual merging to extract 

multilingual knowledge in the intermediate layers,  

and finally carries out further language-specific 

encoding [15]. 

5. UNICODER [16] – a universal language coder 

insensitive to language differences. For natural 

language processing tasks, the model can be trained 

using training data in one language and directly 

applied to the same task in other languages. 

Compared to similar approaches, such as 

Multilingual BERT and XLM, three new cross-

lingual pre-training tasks are proposed, including 

cross-lingual word recovery, cross-lingual 

paraphrase classification, and cross-lingual masked 

language modeling [16]. 

 

Due to technical constraints and other limitations, 

mBERT and LaBSE were selected to solve the entity 

extraction task. 

  

IV. CONTINUAL PRE-TRAINING AND FINE-TUNING 

Both models have a BERT architecture, and their training 

process is similar, consisting of two stages: pretraining and 

finetuning. Both models are pretrained on large and diverse 

corpora, which include texts from the field of chemistry 

(about 7%). The architecture of these models is a multi-layer 

bidirectional encoder based on the original transformer. 

During the pretraining stage, the model is trained (in our 

case, fine-tuned) on an unlabeled text corpus through various 

tasks to learn sentence representations from both the left and 

right context in all its layers. The semi-supervised tasks used 

in the pretraining phase are masked language modeling 

(MLM) and next sentence prediction (NSP) [17]. In the 

MLM task, 15% of input tokens are randomly masked 

before the sequences are processed. Once selected, a token 

is masked with a [MASK] token in 80% of cases, replaced 

with a random token in 10% of cases, and left unchanged in 

the remaining 10%. The data generator processes the 

masked sentences and selects 15% of the masked tokens to 

predict based on their context. 

The goal of the NSP task is to predict the next sentence 

for jointly pretraining representations of text pairs. The 

model focuses on two masked sentences, A and B, to learn 

the relationship between them. B follows A in the original 

text 50% of the time, while in the other 50%, it is replaced 

with a sentence randomly selected from the corpus. In the 

NER task, sentence B corresponds to the entity labels found 

in sentence A. The NSP task is important for building 

question-answer systems and generating inferences in natural 

language.  

However, for the entity extraction task, analysis of the 

articles showed that excluding NSP does not significantly 

degrade or improve the results, but simplifies the model 

training process in terms of training time. Additionally, 

understanding the context between words in a sentence plays 

a major role in entity extraction. Therefore, more attention 

was given to the MLM task in this study. 

It is worth that the LaBSE model is trained on MLM and 

TLM (translation language modeling) tasks. TLM was 

introduced to improve cross-lingual pretraining and is an 

extension of MLM. Fig. 2 shows how TLM works and its 

difference from MLM. 

TLM extends MLM to sentence pairs written in different 

languages. To predict a masked English word, the model can 

consider both the English sentence and its French 

translation, aligning the English and French representations. 

The positional embeddings of the target sentence are reset to 

facilitate alignment. 

The mBERT model implementation was taken from [7], 

and the LaBSE model was adapted for English and Russian 

[11]. 

The MLM task includes the following concepts: 

 W=[w1,w2,…,wn,] – the input sentence of length n 

 Ŵ – the sentence with some tokens masked 

[MASK] 

 θ – model hyperparameters 

 P(wi| Ŵ, θ) – the probability of correctly predicting 

word wi 

The task is to maximize the log-likelihood function: 

 
 

The fine-tuning loop for the models consists of the 

following steps: 

1. A certain percentage of randomly selected words 

are replaced with [MASK]. 

2. The sentences are passed to the model. 

3. For each token, the model generates a prediction as 

a list of words from the model's vocabulary, along 

with scores for each word. 

4. Loss calculation. 

5. Weight update. 

Perplexity [18] is used as the quality metric. 
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Fig. 2: The difference between MLM and TLM 

 

The result of training is a model with weights 

adjusted based on the collected data. 

During model training, the number of epochs was varied, 

and the learning curve and loss penalty functions were 

optimized. As a result, in the initial training of mBERT and 

LaBSE, the loss function values were 0.73 and 1.06, 

respectively, and perplexity values were 2.8 and 3.9. 

Additionally, for solving the MLM task with LaBSE, a 

sentence alignment procedure was added based on patent 

texts written in both Russian and English. The alignment was 

based on context rather than direct translation. 

Consequently, the MLM task was solved using the aligned 

dataset, and LaBSE was fine-tuned with MLM parameters 

for the TLM task. Checkpoints from models trained on 

MLM were used for this purpose. These parameters were 

also applied to the mBERT model. Furthermore, the model's 

hyperparameters were fine-tuned during the entity extraction 

task. After these steps, the perplexity values for mBERT and 

LaBSE models decreased to 2.6 and 3.6, respectively. 

V. EXTRACTION OF NAMED ENTITIES 

A small experiment was conducted to extract named 

entities—names of chemical structures. The model 

architectures were modified without altering the 

hyperparameters of the pretrained components. An 

additional top layer was added, serving as a classifier to 

solve the entity extraction task. 

Next, two tokens were added to the tokenizer: B-chem 

and I-chem, and tokenization of words and subwords was 

carried out. All tags were recorded in the label2id and 

id2label dictionaries. After data preparation, the training 

process for entity extraction in the text began, followed by 

hyperparameter optimization. The number of epochs was set 

to 10 and 20. 

 

 

To implement the proposed approach, additional 

preprocessing of the constructed dataset was performed. It 

included the following steps: 

1. Splitting the data into two sets: training and test 

samples. 

2. The selected models based on the BERT 

architecture accept sentences up to 512 characters 

in length as input. Therefore, all sentences 

exceeding this length were truncated. 

3. All sentences were tokenized and grouped into sets 

of 128 elements (sentences). 

4. A class label array was created. 

 

The models trained using this approach were then 

compared with other models that were used by different 

groups for chemical entity extraction from texts. The 

comparison was based on the performance of the following 

models: 

 mBERT, 

 LaBSE, 

 BioBERT – a separate multilingual model trained 

on PubMed articles, with a specific focus on 

biomedical texts, used for extracting biomedical 

data from texts [19], 

 ChemBERTa – a model fine-tuned specifically for 

extracting chemical entities from texts [20], 

 BERT [21]. 

All models were trained in the same way. For each model, 

a hyperparameter tuning procedure was carried out on the 

task of named entity recognition from texts, and the same 

hyperparameters were used for pretraining. 
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Table 1 presents the experimental results, with the f1 

score used as the quality metric. 

 

 

Table 1. Model comparison 

Model F1-score 

mBERT without continual 

pre-training 

0.65 

mBERT with continual pre-

training 

0.80 

LaBSE without continual pre-

training 

0.68 

LaBSE without continual pre-

training 

0.79 

BioBERT 0.65 

ChemBERTa 0.39 

BERT 0.14 

The experiments showed that the proposed cross-lingual 

embedding approach significantly improves the quality of 

chemical entity recognition in texts. 

VI. CONCLUSION 

The task of developing information extraction methods 

from texts in highly specialized fields is highly relevant. 

These methods allow us to solve a wide range of tasks, such 

as developing specialized search engines, data collection 

services, and more. This study presents the results of 

implementation cross-lingual embeddings for texts in 

chemistry and related fields in both Russian and English. 

The proposed approach was tested on the task of extracting 

names of chemical structures from texts in Russian and 

English. The experimental results demonstrated the 

effectiveness of this approach for named entity extraction. 

Future work will focus on modifying the algorithm and 

approach to extracting chemical structure names to further 

improve the results. 
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