
International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 2, 2025 
 
 

  
Abstract— The physical register file supports increasing the 

execution width and depth of a superscalar microprocessor to 
exploit more instruction-level parallelism. The efficient design 
of the physical register file is critical since its resources, such as 
the number of read and write ports, have a significant impact 
on CPU power consumption. Reducing the number of ports to 
the physical register file is a well-known direction for 
optimization. For port-count reduction schemes, balancing the 
trade-off between the scheme's complexity and performance is 
crucial. In our work, we introduce a high-level analysis method 
to estimate the complexity of the schemes during 
microarchitectural design. Moreover, we explore the structure 
of different port-count reduction schemes and introduce a 
practical approach to constructing low-complexity read-port-
count reduction schemes for the centralized integer physical 
register file. We show that the read-port-count reduction 
schemes designed with this approach can reduce the number of 
read ports by a factor of two (from 17 to 8 read ports) with the 
Geomean performance degradation of only 0.1% IPC across 
the SPECrate CPU 2017 Integer workloads. 
 

Keywords—register file, port reduction, superscalar 
microprocessor, instruction-level parallelism, area reduction, 
power optimization 
 

I. INTRODUCTION 

Modern superscalar microprocessors with out-of-order 
execution tend to improve performance through increasing 
instruction-level parallelism. Hardware structures such as the 
physical register file (PRF) are the cornerstones to exploiting 
more instruction-level parallelism in an out-of-order 
machine. Increasing the execution depth requires more 
entries in the physical register file in order to support 
register renaming and store the values. Increasing the 
execution width of a superscalar machine requires the 
addition of more read and write ports to the physical register 
file. This leads to high pressure on the physical register file 
and challenges in designing an energy-efficient and area-
efficient processor. The number of read and write ports 
significantly impacts the required area and power 
consumption for the register file, since there is usually a 
quadratic relation between the area and the number of 
register file ports [1]-[3]. 

Due to the high importance of the topic, there have been 

Denis Los – Moscow Institute of Physics and Technology (9 Institutskiy 
per., Dolgoprudny, Moscow Region, 141700, Russian Federation) 

ORCID: https://orcid.org/0009-0009-4500-8106 
email: los.da@phystech.edu 

many works dedicated to the design, organization, and 
optimization of register files in general-purpose processors 
[4]. In this work, similar to [5], we focus on reducing the 
number of ports to the centralized PRF of a general-purpose 
superscalar processor in contrast to exploring multi-bank 
designs. We primarily target the reduction of read ports to 
the register file, since their number is usually bigger. 

Instructions are usually sent to the execution to dedicated 
functional units through the corresponding issue ports. If 
some of the read ports to the PRF are removed, several of 
the remaining read ports will be shared between different 
issue ports. Naturally, in the sharing read-port-count 
reduction scheme, different issue ports cannot use the same 
read port simultaneously. If there is a conflict and multiple 
issue ports need the same shared read port to the PRF to get 
the source operand values, sending some instructions to the 
execution will be canceled this cycle and postponed. 
Usually, sending these canceled instructions to the functional 
execution units will be retried the next processor cycle. 
However, these cancellations result in performance 
degradation from the read-port-count reduction schemes. 

There are several key reasons why conflicts for read ports 
to the PRF do not happen all the time and performance 
degradation from introducing read-port-count reduction 
schemes can be mitigated. First, due to stalls in a processor 
pipeline caused by such events as branch mispredictions, 
cache misses, and structural hazards, there might be no ready 
instructions to be sent through some of the issues ports in 
some processor cycles. It opens the opportunity for other 
issue ports to freely use the non-utilized read ports to the 
PRF in these cycles. Our analysis shows that in a superscalar 
processor with single-thread out-of-order execution, the 
average utilization of the execution width might be as low as 
50% on critical workloads. Second, instructions do not need 
to read all of their source operands from the register file all 
the time. 

There are multiple reasons why instructions might not 
need to read all of their operands from the register file. For 
example, an instruction reading an immediate value will 
usually either propagate it directly from the front-end 
decoding logic or take it from the separate data array that 
stores immediate values. Moreover, if an instruction takes a 
register value from a bypass, it does not need to use a read 
port to the PRF. However, our analysis shows that only 40% 
of integer operands get their values from the bypass network. 
Furthermore, in some architectures, such as x86-64, some 

Efficient Read-Port-Count Reduction Schemes 
for the Centralized Physical Register File in a 

Superscalar Microprocessor 
Denis Los 

105 
 

 



International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 2, 2025 
 
 
instructions do not need all of their operands. Memory 
access instructions in x86-64 architecture usually take two 
register operands, the base and index operands. The linear 
effective address for memory access is computed using a 
base value, an index value with a scale, and an immediate 
displacement value. However, for example, if the index 
operand is not provided, the address will be computed using 
only the base register. Only the value of the base register 
will be read from the PRF using a read port. Therefore, 
reducing PRF read ports corresponding to issues ports for 
memory access instructions is the natural and common 
approach. 

There is a trade-off between area reduction and 
performance degradation in the read-port-count reduction 
schemes. However, the latency of the port arbitration logic 
in the read-port-count reduction schemes for the PRF is also 
an extremely important and frequently overlooked 
parameter. The more different issue ports compete for the 
same read port to the PRF in a read-port-count reduction 
scheme, the more complex the logic to detect conflicts and 
assign the shared read ports becomes. If the latency of the 
critical path of the logical scheme implementing the read-
port-count reduction optimization becomes too high, it might 
require the addition of new pipeline stages and updates 
throughout the dynamic scheduling logic. Naturally, it will 
also lead to higher performance degradation from the read-
port-count reduction. Furthermore, the issue logic is on the 
critical path of the whole processor pipeline, hence, adding 
the extra complex logical schemes will result in higher 
power consumption. 

In this work, we make the following main contributions. 
1) We introduce a practical high-level analysis method to 

estimate the complexity of read-port-count reduction 
schemes during the microarchitectural design. 

2) We introduce a subset of read-port-count reduction 
schemes called uniform symmetric schemes and show 
the benefits of utilizing such schemes 

3) We propose a set of practical rules to construct efficient 
uniform symmetric read-port-count reduction schemes 
that minimize the number of conflicts for read ports. 

II. RELATED WORK 
As we mentioned, there is a large scope of work dedicated to 
designing efficient CPU register files. A great survey on the 
relevant techniques has been conducted in [4]. In this paper, 
we focus on read-port-count reduction schemes for the 
centralized monolithic integer physical register files in 
CPUs. As highlighted in [4], the other techniques to reduce 
the pressure on the PRF and optimize its resources include 
introducing hierarchical designs of register files [6]-[8], 
using multi-banked register file organizations [8]-[12], as 
well as the register cache [1], [13]-[15]. Furthermore, 
compiler-assisted optimizations, utilization of data locality, 
improvements to the bypass network, optimizations to the 
register allocation and release, and leveraging narrow-width 
values are the order common approaches [4]. 

In [5], approaches to reducing the number of read ports in 
the centralized integer physical register files are explored. 
Limitations of the brute-force approaches to read-port-count 

reduction are highlighted. Hence, several optimizations such 
as leveraging the narrow-width values, introducing clever 
priorities in the port arbitration logic, and splitting the 
instructions between the operands to improve the 
cooperation with a data forwarding network are proposed. In 
our work, we introduce several methods to construct brute-
force schemes minimizing their complexity. Our approaches 
could be used with the optimizations introduced in [5]. In 
[16], read-port-count reduction techniques are explored for 
the register file in a VLIW processor. Interconnection 
topologies for shared-port register files are classified into 
complete, direct, and partial interconnection schemes. An 
algorithm is introduced to construct efficient direct 
interconnection schemes. The approach to the constructing 
of the efficient direct interconnection schemes in [16] is very 
similar to ours. However, we use our approach to construct 
both direct and partial interconnection schemes.   

III. METHODOLOGY 
For all experiments in this paper, we use a cycle-accurate 
x86-64 performance simulator. We model a superscalar 
CPU core with single-thread out-of-order execution. The 
modeled CPU core has 9 functional execution units that 
perform operations on integer operands: 4 arithmetic logic 
units (ALU), 2 load execution functional units with address 
generation units (AGU), 2 functional units with AGUs for 
store-address (STA) operations, and 1 functional store-data 
unit to perform store-data (STD) operations. The number of 
read ports to the integer PRF in the baseline scheme with no 
reductions is 17: 8 read ports for the ALUs, 8 read ports for 
the all AGUs, and 1 read port for the store-data functional 
unit. The number of write ports to the integer PRF is 10: 8 
write ports for the ALUs and 2 write ports for the load 
execution units. 

The CPU model has the integer physical register file with 
180 entries, the reorder buffer with 224 entries, and the 
reservation station with 97 entries. The sizes of the load and 
store queues are 56 and 72 entries, respectively. The CPU 
model has 32 KiB 8-way L1 instruction and data caches and 
256 KiB 4-way L2 cache. 

All of the experiments are conducted on the workloads 
from the SPECrate CPU 2017 Integer benchmark suite [17] 
compiled for the Linux operating system using GCC 
compiler. 

IV. CONSTRUCTING READ-PORT-COUNT REDUCTION 
SCHEMES 

In this work, we explore the read-port-count reduction 
schemes that reduce the number of read ports to the integer 
PRF from 17 to 8. We remove 9 read ports assigned to the 
functional units that execute load and store operations. 
Hence, 4 ALUs and 5 functional units that execute load and 
store instructions start to share the remaining 8 read ports to 
the PRF.  
 If several functional units are competing for the same read 
port, multiple approaches can be used to determine which 
functional unit should utilize the port. To reduce the 
complexity of the read-port-count reduction schemes, in this 
paper, we consider the following approach. We statically 

106 
 



International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 2, 2025 
 
 
assign priorities to each of the functional execution units. 
ALUs receive the highest priority level. We do not share 
read ports between different ALUs, hence, if an ALU 
requires a read port, it will use its dedicated port. Load and 
store execution units will be able to use a read port, only if it 
is not requested by an ALU. We assign the second priority 
level to the load execution units. The third and fourth 
priority levels are assigned to the store-address and store-
data execution units, respectively.  Furthermore, we assign 
internal priority levels to the execution units of the same 
type. For example, if an ALU does not require a read port, 
which load execution unit will use the port will be 
determined based on the statically assigned priority levels. 

Similar to [16], we introduce a matrix as a convenient way 
to represent real-port-count reduction schemes and describe 
the interconnections in the port arbitration logic. An 
example of such a matrix is provided in Fig. 1. The indexes 
of the functional execution units (0-3) and the corresponding 
indexes of the remaining read ports (0-7) are written at the 
top. The indexes of the load and store execution units and 
their operands are written on the left. s1 and s2 denote the 
first and the second operands, respectively. Unit 8 here 
corresponds to the store-data function unit that can read only 
one operand. Units 4 and 5 are the load execution units, 
while units 6 and 7 are the store-address functional units. 
The 1s in the matrix represent connections between the 
remaining read ports to the integer PRF and the operands of 
the load and store execution units with reduced read ports. 
The 0s indicate the absence of such connections. 

 

0 1 2 3 4 5 6 7
s1 0 1 0 0 1 0 0 0
s2 0 0 1 0 0 0 0 1
s1 0 0 0 1 0 0 1 0
s2 1 0 0 0 0 1 0 0
s1 0 0 1 0 0 0 0 1
s2 0 1 0 0 1 0 0 0
s1 1 0 0 0 0 1 0 0
s2 0 0 0 1 0 0 1 0

8 s2 1 0 0 0 0 1 0 0

6

C

7

1 2 3

4

5

0

 
 

Figure 1. Example of the matrix representing the read-port-
count reduction scheme 

For example, for the scheme in Fig. 1, the first operand 
(the base operand) of the load instruction on the 4th issue 
port and the second operand (the index operand) of a STA 
instruction on the 6th issue port can be read from the read 
ports with indexes 1 and 4. However, it is possible only if 
these read ports are not requested by instructions executing 
on ALUs on the 0th and 2nd issue ports. For the base operand 
of the load instruction on the 4th issue port, the value will be 
read from read port 1 if the read port is not used by the ALU 
and the load instruction needs the base value to be read. The 
requested base operand value will be read from read port 4 if 
the port is free and read port 1 is occupied. For the requested 
index value of the STA instruction on the 6th issue port, the 

value will be read from port 1 only when the read port is not 
used by the ALU and the base operand of the load 
instruction on the 4th issue port is not requested. The 
requested index value on the 6th issue port will be read from 
port 4 only when, first, the arithmetic instruction executing 
on the 2nd issue port does not read from port 4, and, second, 
either read port 1 is not used by the 0th issue port and the 
base operand on 4th issue port is requested or read port 1 is 
used by the 0th issue port and the base operand on 4th issue 
port is not requested. 

 For each of the remaining read ports, port arbitration 
logic needs to determine which functional unit will use it to 
get the operand value this cycle and whether any instructions 
need to be canceled. For each read port, let us define a one-
hot vector s[0..16] showing which operand will be read 
using this read port. In this one-hot vector, indices from 0 to 
7 correspond to the operands of the ALUs, and indices from 
8 to 16 correspond to the operands of the memory access 
functional units. We define a matrix S[0..7][0..16] as the 
combination of one-hot vectors for each read port. Let us 
denote as a[0..7] the vector showing which operands are 
requested by ALUs. We denote as k[0..8] the vector 
showing which operands are requested by the memory 
access functional units. Using vectors a[0..7] and k[0..8], 
the values in the matrix S[0..7][0..16] could be computed 
for each processor cycle. 

V. ESTIMATING COMPLEXITY OF THE READ-PORT-COUNT 
REDUCTION SCHEMES 

It is necessary to estimate the complexity of the port 
arbitration logic based on the critical path. The real critical 
path of the functional logic in the hardware depends on 
many parameters, such as the types of transistors used, the 
processor frequency, the platform for implementing the 
hardware logic, the accuracy of the circuit synthesis 
algorithms, and many others. In this regard, in practice, 
when developing the processor microarchitecture, it is not 
possible to estimate the real critical path of the logical 
circuit, since most of these parameters become known only 
at the stage of hardware logic design when the main work on 
developing the processor microarchitecture has already been 
completed. 

Thus, it is necessary to introduce a computable for port 
arbitration logic of read-port-count reduction schemes, 
allowing us to estimate the length of the critical path during 
microarchitectural design and simulation stages. The length 
of the critical path can be determined by estimating the 
complexity of logical expressions used to calculate the 
elements of the matrix S[0..7][0..16]. We use an element in 
the matrix S with the longest critical path as the estimation 
for the critical path of the whole port arbitration logic. 

Elementary logic elements used at the stage of 
microprocessor design can vary in the number of supported 
input signals depending on the type of transistors used and 
their size. Specific sets of elementary logic elements and 
their characteristics, as noted earlier, become known, 
usually, only at the stage of hardware design. In addition, the 
synthesis of logic circuits with arbitrary non-uniform 
elements is a complex computational problem and is solved 

107 
 



International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 2, 2025 
 
 
using large computing clusters at the stage of circuit design. 
Thus, when constructing logical functions for estimating the 
critical path, we will use elementary logic elements: a 
negation element, a dual-channel AND element, and a dual-
channel OR element. We consider the lengths of the critical 
paths of the elementary conjunction and disjunction 
elements to be the same and equal to one-time quantum. To 
simplify the calculations, we will neglect the length of the 
critical path of the negation element compared to the lengths 
of the critical paths of AND and OR elements. 

To determine the length of the critical path of a logical 
function, it is not enough to simply consider an arbitrary 
implementation of the function using negation, conjunction, 
and disjunction elements, but it is necessary to use a minimal 
representation with the shortest critical path length. It is 
known that the minimal representations for a logical function 
implemented using negation, conjunction, and disjunction 
elements are the Minimum Conjunctive Normal Form 
(MCNF) and the Minimum Disjunctive Normal Form 
(MDNF), represented using these elements as a binary tree. 
The depths of the constructed trees for MCNF and MDNF 
will be the minimal critical paths. By selecting the minimal 
depth from the trees constructed using MCNF and MDNF, 
the desired critical path length for the logical function will 
be obtained. 

There are many algorithms for finding the MCNF and 
MDNF from the constructed logical functions for the 
elements of the matrix S, differing in their running time and 
minimization accuracy. In the case of a small number of 
input elements, it is possible to minimize the functions using 
methods that allow finding an exact solution, for example, 
the Quine-McCluskey method, which is easily implemented 
using different programming languages. However, the 
running time of the Quine-McCluskey algorithm increases 
exponentially with an increase in input data. Thus, for 
logical circuits with a large number of input parameters (for 
microprocessors with a large number of functional execution 
units), it is necessary to use heuristic minimization methods, 
such as the Espresso algorithm [18]. 

As a result, the algorithm for estimating the length of the 
critical path for read-port-count reduction schemes in a 
physical register file could be described as follows. 

1. For each calculated element of the matrix S, construct a 
logical function. 

2. Using one of the minimization algorithms, construct the 
MCNF and MDNF for elements from S. 

3. Represent the MCNF and MDNF as binary trees and 
determine the depth of each of them. 

4. Select the minimum depth from the MCNF and MDNF 
representations. 

With the help of this proposed algorithm, it is possible to 
estimate the complexity of the port arbitration control logic 
of read-port-count reduction schemes and compare different 
schemes with each other. However, by itself, this metric 
does not give an absolute threshold value, the excess of 
which will mean that the port arbitration control logic will 
not be able to perform calculations within one processor 
cycle. 

Such threshold value can be estimated if we find a logical 

function with the boundary length of the critical path under 
the conditions of the existing technological process. For 
example, we can find the logical function that needs 
approximately one cycle to be fully computed in the 
hardware of a current processor. Having found this logical 
function, we can estimate the length of the critical path for it 
using the proposed algorithm. The estimated critical path 
length for the analyzed logical functions can be used as the 
threshold value.  

VI. EFFICIENT READ-PORT-COUNT REDUCTION SCHEMES 
Read-port-count reduction schemes can lead to significant 
performance degradation caused by a large number of 
conflicts for the read ports. 

According to our analysis, the performance degradation 
can reach up to -4% IPC (Instructions per Cycle) on average 
(and up to -30% IPC on individual workloads) with poor 
organization of the schemes. 
 The complexity of the read port reduction schemes 
depends heavily on the arrangement of the functional 
connections between the memory access operands and the 
read ports to the physical register file. For example, in Fig. 2 
and Fig. 3 we show the schemes for reducing the read ports 
from 17 to 8 ports.  

0 1 2 3 4 5 6 7
s1 1 0 0 0 0 0 0 0
s2 0 1 0 1 0 0 0 0
s1 0 0 1 0 0 0 0 0
s2 0 1 0 1 0 0 0 0
s1 0 0 0 0 1 0 0 0
s2 0 0 0 0 0 1 0 0
s1 0 0 0 0 0 0 1 0
s2 0 0 0 0 0 0 0 1

8 s2 0 0 0 0 0 0 1 0

4

5

6

7

C 0 1 2 3

 
 

Figure 2. Example of the read-port-count reduction scheme 
with a complexity of 3 time units 

 

0 1 2 3 4 5 6 7
s1 1 0 0 0 0 0 0 0
s2 0 1 0 0 0 0 0 0
s1 0 0 1 0 0 0 0 0
s2 0 1 0 1 0 0 0 0
s1 0 0 0 0 1 0 0 0
s2 0 0 0 0 0 1 0 0
s1 0 0 0 1 0 0 1 0
s2 0 0 0 0 0 0 0 1

8 s2 0 0 0 0 0 0 1 0

5

6

7

0 1 2 3

4

C

 
 

Figure 3. Example of the read-port-count reduction scheme 
with a complexity of 4 time units 

 

108 
 



International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 2, 2025 
 
 

Both schemes have the same total number of functional 
connections and differ only in the location of one functional 
connection. However, the estimated critical path length for 
the scheme in Fig. 2 is 3 time units, while for the scheme in 
Fig. 3, it is 4 time units. 
 

This difference in the values of the critical path lengths is 
explained by the difference in the number of dependent 
parameters entering different elements of the matrix S. In 
cases where the parameters from the vectors a and k are 
uniformly included in the logical expressions for different 
elements of the matrix S, the estimate of the critical path 
length is usually not high and does not exceed the threshold 
values. However, in cases where the uniform distribution is 
violated and a large number of parameters are included in 
one or more logical expressions calculated for S, the critical 
path length becomes large and can exceed the threshold 
value for many functional connections. The rows of the 
representation matrix of the read-port-count reduction 
scheme are vectors that reflect the functional connections 
between the operands used in memory access functional 
units and the read ports from the physical register file. Let us 
consider the set of unique rows of the representation matrix. 
Each vector entering the set of unique rows will be called a 
mask of the read-port-count reduction scheme. The number 
of masks for a particular read-port-count reduction scheme is 
the total number of unique vectors entering the set of rows of 
the representation matrix. For the scheme shown in Fig. 2, 
the number of masks is 7, and for the scheme shown in Fig. 
3, the number of masks is 9.  

In addition, let us consider the mask configurations for the 
two schemes shown in Fig. 2 and Fig. 3. It can be seen that 
the masks (unique rows of the representation matrix) for the 
scheme in Fig. 2 do not intersect with each other, and their 
union gives a single row, which means that each of the 
available read ports has at least one functional connection to 
the operands of the memory access units. The masks for the 
scheme in Fig. 3 have pairwise intersections, shown in Fig. 
4, although they completely cover the set of read ports with 
functional connections.  

 
0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 0
0 0 0 1 0 0 1 0
0 0 0 0 0 0 1 0  

 
Figure 4. Example of the intersecting masks 

 
The intersection between masks in read-port-count 

reduction schemes forms dependencies between different 
calculated elements of the matrix S. Although the logical 
expressions for the elements of the matrix S are calculated in 
parallel and do not directly lead to an increase in the length 
of the critical path of the logical expression, they lead to the 
dependence of the matrix element function on a larger 
number of parameters from the vectors a and k, thereby 
complicating the control logic of the scheme. 

The intersection between masks affects not only the 

complexity of the port arbitration logic but also the system 
performance when using read-port-count reduction schemes. 
This is explained by the fact that in the case of the 
intersection, some of the read ports are loaded more heavily, 
leading to an increase in the number of conflicts for the 
operands used in functional units that have a low priority on 
this port, while some of the read ports are not fully utilized. 
Also, to improve the performance when using port reduction 
techniques, the set of masks should cover the largest part of 
the set of read ports, to avoid a situation with a similar 
unbalanced load on the read ports, leading to an increase in 
the number of conflicts for read ports from an integer 
physical register file. Thus, to build schemes that are 
efficient in terms of the complexity of the port arbitration 
logic and system performance for a given total number of 
functional connections between the operands used in the 
memory access functional units and the read ports, it is 
necessary to use masks that satisfy the following conditions: 

1. The union of masks yields a unit row vector of the size 
equal to the number of non-reduced available read ports 

2. The masks do not intersect with each other 
We will call read-port-count reduction schemes the masks 

of which satisfy the above conditions symmetric. Note that in 
general, this does not mean geometric symmetry in the 
representation matrix of read-port-count reduction schemes. 

In symmetric read-port reduction schemes, different 
masks may correspond to different numbers of functional 
connections, thus leading to different numbers of read 
conflicts for operands with the same utilization. Hence, for 
the workloads in which some of the operands used in the 
execution units with masks with the smallest number of 
functional connections are used more than others, the 
performance drop will be greater. Therefore, to maintain the 
same average performance on different workloads, 
symmetric schemes should be used, the masks of which 
correspond to the same number of functional connections. 
We will call such symmetric schemes uniform symmetric. 

The number of functional connections in masks of 
uniform symmetric read-port-count reduction schemes 
cannot be arbitrary. Since the mask vectors should not 
intersect with each other and must completely cover the set 
of available read ports, then, consequently, the number of 
functional connections in masks of uniform symmetric 
schemes must be a divisor of the number of non-reduced 
read ports. For the considered examples, when the number 
of read ports is reduced from 17 to 8, masks of uniform 
symmetric schemes can have 1, 2, or 4 functional 
connections. Naturally, masks with 8 functional connections 
are not practically significant.  

All uniform symmetric schemes with a given number of 
connections in masks and with a fixed number of operands 
in memory access functional units for which the read ports 
have been reduced will have the same estimate of the length 
of the critical path of the port arbitration logic. This is the 
result of the constraints imposed on uniform symmetric 
schemes. Examples of uniform symmetric read-port-count 
reduction schemes with the number of connections in masks 
equal to 1, 2, and 4 are shown in Fig. 5, Fig. 6, and Fig. 7, 
respectively. The corresponding estimates of the lengths of 

109 
 



International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 2, 2025 
 
 
the critical paths are equal to 2, 5, and 9 time units. 

However, using arbitrary uniform symmetric schemes is 
not enough to obtain an acceptable performance degradation 
with read-port-count reduction schemes. The scheme shown 
in Fig. 5 leads to a geomean performance drop of -3.2% 
IPC. 

In uniform symmetric schemes with a fixed number of 
connections, the main varying are masks, namely, which 
functional connections form masks and which functional 
connections exist for each of the operands used in the 
execution unit. The utilization of the operands used in 
execution units varies and depends on the target workloads 
under consideration. In this case, the more often a certain 
operand whose read ports have been reduced is used, the 
more conflicts are expected for this operand. In addition, the 
higher the port utilization for certain operands of arithmetic 
units whose read ports are not reduced, the less likely we are 
to read from the corresponding read ports the operands 
requested in memory access execution units that have 
functional connections to this port. 

 

0 1 2 3 4 5 6 7
s1 1 0 0 0 0 0 0 0
s2 0 1 0 0 0 0 0 0
s1 0 0 1 0 0 0 0 0
s2 0 0 0 1 0 0 0 0
s1 0 0 0 0 1 0 0 0
s2 0 0 0 0 0 1 0 0
s1 0 0 0 0 0 0 1 0
s2 0 0 0 0 0 0 0 1

8 s2 0 0 0 0 1 0 0 0

1 2 3

4

5

C 0

6

7

 
Figure 5. Example of the uniform symmetric read-port-count 

reduction scheme with 1 functional connection 
 

0 1 2 3 4 5 6 7
s1 0 1 0 0 1 0 0 0
s2 0 0 0 1 0 0 1 0
s1 0 0 1 0 0 0 0 1
s2 1 0 0 0 0 1 0 0
s1 0 0 0 1 0 0 1 0
s2 0 1 0 0 1 0 0 0
s1 1 0 0 0 0 1 0 0
s2 0 0 1 0 0 0 0 1

8 s2 1 0 0 0 0 1 0 0

1 2 3

4

5

C 0

6

7

 
Figure 6. Example of the uniform symmetric read-port-count 

reduction scheme with 2 functional connections 
 

In uniform symmetric schemes with a fixed number of 
connections, the main parameters of variation are masks, 
namely, which functional connections form masks and which 
functional connections exist for each of the operands of the 
execution units. 

 

0 1 2 3 4 5 6 7
s1 1 0 0 1 1 0 0 1
s2 0 1 1 0 0 1 1 0
s1 0 1 1 0 0 1 1 0
s2 1 0 0 1 1 0 0 1
s1 0 1 1 0 0 1 1 0
s2 1 0 0 1 1 0 0 1
s1 0 1 1 0 0 1 1 0
s2 1 0 0 1 1 0 0 1

8 s2 0 1 1 0 0 1 1 0

1 2 3

4

5

C 0

6

7

 
Figure 7. Example of the uniform symmetric read-port-count 

reduction scheme with 4 functional connections 
 

The utilization of the operands of the execution units is 
different and depends heavily on the target workloads. In 
this case, the more often a certain operand of execution units 
whose read ports have been reduced is used, the more 
conflicts are expected to be received for this operand. In 
addition, the higher the port utilization for certain operands 
of arithmetic units whose read ports are not reduced, the less 
likely we are to read from the corresponding read ports. 

Without any applied port reduction techniques, the 
distribution for the operands of the arithmetic execution 
units by the frequency of use (utilization) of the 
corresponding read ports is shown in Fig. 8. The arithmetic 
units executing the same classes of operations are shown in 
the same colors. The utilizations for the operands of the 
units executing symmetric sets of operations are practically 
the same, since at the allocation stage, to increase the 
machine's performance, the execution control logic evenly 
distributes incoming operations among issue ports. 

 

0 1 2 3 4 5 6 7
13.4% 14.8% 9.9% 11.9% 13.4% 14.8% 9.9% 11.9%

0 1 2 3

 
Figure 8. Utilization of the PRF read ports corresponding to 

different operands in arithmetic instructions 
 

As we can see, the read ports corresponding to the 0th and 
2nd issue ports are the most loaded: the utilization of the read 
port for the first operand is 13.4%, and the utilization of the 
read port by the second operand is 14.8%. At the same time, 
the read ports in arithmetic operations are more often used 
for the second operands, since the first operands more often 
take the register values from the data transfer system 
between processor stages. 

According to the conducted analysis, the distribution of 
memory access operands by the frequency of read accesses 
to the integer physical register file is shown in Fig. 9. 

 
8

s1 s2 s1 s2 s1 s2 s1 s2 s2
21.0% 8.1% 21.1% 8.1% 11.6% 5.3% 11.6% 5.3% 7.8%

4 5 6 7

 
Figure 9. Utilization of the PRF read ports corresponding to 

different operands in memory access instructions 
 

110 
 



International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 2, 2025 
 
 

As we can see from Fig. 9, the operands corresponding to 
the read ports with the highest load are the base operands of 
load instructions with a utilization of 21.0%. The operands 
corresponding to the read ports with the lowest utilization 
are the index operands of STA instructions with a utilization 
of 5.3%. 

When selecting a specific mask for the port reduction 
scheme, the probability that at least one of the read ports 
featured in the functional connections in this mask will be 
free is determined by the utilization distribution for the 
arithmetic operands shown in Fig. 8. In a simple case, the 
occupancy of a specific mask, determined by the probability 
of getting a conflict when reading a register value using this 
mask, can be found as the sum of the occupancies for the 
incoming functional connections with the corresponding 
operands of the arithmetic units. Thus, the masks of the 
read-port-count reduction schemes vary in their expected 
occupancy. Using the arithmetic operand utilization 
distribution table, it is necessary to select masks with the 
lowest occupancy to mitigate the introduced performance 
degradation as much as possible when using the read port 
reduction scheme. At the same time, for a given number of 
functional connections, the masks with uniform expected 
occupancies should be selected to prevent a large drop in 
performance on specialized workloads. For the same reason, 
it is necessary to select functional connections with operands 
belonging to units executing operations from different 
classes. This will mitigate a large performance degradation 
on workloads in which the input instruction program flow is 
uniform in terms of the classes of operations present (for 
example, most arithmetic operations are shift operations). 
Based on the proposed set of rules minimizing the 
probability of getting a conflict for a certain mask, the set of 
masks for the efficient uniform symmetric scheme with 2 
functional connections will be the following: (0, 3), (4, 7), 
(1, 2), (5, 6). 

even though the masks obtained for the uniform 
symmetric schemes using these rules have the smallest 
variance of the expected load, for schemes with a large 
number of connections (4 functional connections in a mask) 
or with a sufficiently small number of connections (1 
functional connection in masks), the pairwise difference in 
the values of the expected loads between different masks 
will be significant. To mitigate performance degradation 
when using read-port-count reduction schemes, it is 
necessary to assign masks with the lowest expected load to 
the most used operands of memory access execution units. In 
this case, 2 masks with an expected load of 24.7% should be 
assigned to the base operands of load instructions. 
Furthermore, different masks should be assigned to the same 
operands. For schemes with a small total number of masks, 
the set of operands corresponding to the same mask should 
be as non-uniform as possible in terms of operand types and 
memory access execution units. These ideas correspond to 
the ones introduced in [16]. 

However, simply mapping a set of selected masks sorted 
in the increasing order of the expected utilization onto a set 
of memory access instruction operands sorted in the 
decreasing order of utilization (frequency of access to the 

physical register file) is insufficient to obtain efficient 
schemes that mitigate performance degradation. The same 
selected mask should be mapped onto the memory access 
operands in groups organized in such a way that, first, the 
average expected mask load, calculated taking into account 
the utilization of the corresponding operands, is minimal, 
and, second, the variance of the expected utilization in 
memory access operands is minimal. This allows balancing 
the read-port-count reduction schemes so that frequently 
used memory access operands are not assigned to the same 
masks, and, hence, the mathematical expectation of the 
number of conflicts for read ports is decreased. For example, 
for the scheme with 2 functional connections, the groups 
consist of 2 and 3 operands and are as follows: 

1. The base operand of load instructions and the index 
operand of STA instructions 

2. The index operand of load instructions and the base 
operand of STA instructions 

3. The index operand of load instructions, the base 
operand of STA instructions, and the operand of STD 
instructions. 

Thus, the complete heuristic algorithm for constructing 
efficient uniform symmetric read-port-count reduction 
schemes consists of the following stages: 

1. Obtain the distribution of read port utilization for the 
operands of arithmetic instructions and operands of memory 
access instructions for the target workloads. 

2. According to the proposed rules, determine the set of 
scheme masks for a given number of functional connections 

3. Based on the proposed distribution of operands by 
groups, match the found masks to the operands of memory 
access instructions, minimizing the mathematical expectation 
of the number of conflicts for read ports. 

Using the proposed heuristic algorithm, uniform 
symmetric read-port-count reduction schemes were 
constructed for the number of functional connections 1, 2, 
and 4. The constructed schemes are shown in Fig. 10, Fig. 
11, and Fig. 12, respectively. 

0 1 2 3 4 5 6 7
s1 0 0 1 0 0 0 0 0
s2 1 0 0 0 0 0 0 0
s1 0 0 0 0 0 0 1 0
s2 0 0 0 0 1 0 0 0
s1 0 0 0 1 0 0 0 0
s2 0 1 0 0 0 0 0 0
s1 0 0 0 0 0 0 0 1
s2 0 0 0 0 0 1 0 0

8 s2 0 1 0 0 0 0 0 0

4

5

6

7

C 0 1 2 3

 
Figure 10. Efficient uniform symmetric read-port-count 

reduction scheme with 1 functional connection 
 

As we stated earlier, uniform symmetric read-port-count 
reduction schemes with the same number of functional 
connections have the same estimated complexity. The 
estimates of the critical path length for the constructed 

111 
 



International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 2, 2025 
 
 
schemes shown in Fig. 10, Fig. 11, and Fig. 12 are 2, 5, and 
9 time units, respectively. 
 

0 1 2 3 4 5 6 7
s1 0 1 1 0 0 0 0 0
s2 0 0 0 0 1 0 0 1
s1 0 0 0 0 0 1 1 0
s2 1 0 0 1 0 0 0 0
s1 0 0 0 0 1 0 0 1
s2 0 1 1 0 0 0 0 0
s1 1 0 0 1 0 0 0 0
s2 0 0 0 0 0 1 1 0

8 s2 1 0 0 1 0 0 0 0

4

5

6

7

C 0 1 2 3

 
Figure 11. Efficient uniform symmetric read-port-count 

reduction scheme with 2 functional connections 
 

0 1 2 3 4 5 6 7
s1 0 1 1 0 1 0 0 1
s2 1 0 0 1 0 1 1 0
s1 1 0 0 1 0 1 1 0
s2 0 1 1 0 1 0 0 1
s1 0 1 1 0 1 0 0 1
s2 1 0 0 1 0 1 1 0
s1 1 0 0 1 0 1 1 0
s2 0 1 1 0 1 0 0 1

8 s2 1 0 0 1 0 1 1 0

5

6

7

0 1 2 3

4

C

 
Figure 12. Efficient uniform symmetric read-port-count 

reduction scheme with 4 functional connections 
 

 Performance evaluations for the three constructed read-
port-count reduction schemes are presented in Fig. 13. The 
scheme with 1 functional connection results in -1.6% 
geomean IPC performance degradation on SPECrate CPU 
2017 Integer workloads, while the schemes with 2 and 4 
functional connections allow reducing the number of read 
ports to the integer PRF by a factor of two with the 
respective geomean performance degradations of -0.2% IPC 
and -0.1% IPC on SPECrate CPU 2017 Integer workloads.  

 
Figure 13. Geomean performance degradations with the 

constructed uniform symmetric read-port-count reduction 
schemes for the integer PRF (17  8 read ports)  

 
The worst-case performance degradations on individual 

workloads for the constructed schemes with 2 and 4 
functional connections are -14% IPC and -5% IPC, 
respectively. 

VII. CONCLUSION 
The number of ports to the physical register file in 
superscalar out-of-order processors significantly impacts the 
power consumption and the required chip area. In this work, 
we introduce a practical approach to constructing low-
complexity read-port-count reduction schemes for the 
integer physical register in superscalar CPUs with single-
thread out-of-order execution.  

The constructed read-port-count reduction schemes show 
geomean performance degradations as low as -0.1% IPC 
across SPECrate CPU 2017 Integer workloads with the 
number of read ports reduced from 17 to 8. 

REFERENCES 
[1] R. Shioya, K. Horio, M. Goshima, and S. Sakai, "Register cache 

system not for latency reduction purpose," in 2010 43rd Annual 
IEEE/ACM International Symposium on Microarchitecture, Atlanta, 
GA, USA, 2010, pp. 301-312, DOI: 10.1109/MICRO.2010.43. 

[2] S. Rixner, W. J. Dally, B. Khailany, P. Mattson, U. J. Kapasi and J. 
D. Owens, "Register organization for media processing," in Proc. of 
the Sixth International Symposium on High-Performance Computer 
Architecture, Touluse, France, 2000, pp. 375-386, DOI: 
10.1109/HPCA.2000.824366. 

[3] S. Thoziyoor, N. Muralimanohar, J. Ahn, and N. Jouppi, “Cacti 5.1,” 
HP Laboratories, Palo Alto, Tech. Rep. HPL-2008-20, 2008. 

[4] S. Mittal, “A Survey of Techniques for Designing and Managing 
CPU Register File,” Concurrency and Computation: Practice and 
Experience, vol. 29, no. 4, pp. 1-23, 2017, DOI: 10.1002/cpe.3906. 

[5] S. Sirsi and A. Aggarwal, "Exploring the limits of port reduction in 
centralized register files," in 2009 22nd International Conference on 
VLSI Design, New Delhi, India, 2009, pp. 535-540, DOI: 
10.1109/VLSI.Design.2009.29. 

[6] R. Balasubramonian, S. Dwarkadas, and D. H. Albonesi, "Reducing 
the complexity of the register file in dynamic superscalar 
processors," in Proc. of the 34th ACM/IEEE International 
Symposium on Microarchitecture, Austin, TX, USA, 2001, pp. 237-
248, DOI: 10.1109/MICRO.2001.991122. 

[7] J. A. Swensen and Y. N. Patt, “Hierarchical registers for scientific 
computers,” in Proc. of the 2nd International Conference on 
Supercomputing, St. Malo, France, 1988, pp. 346-354, DOI: 
10.1145/55364.55398. 

[8] J.-L. Cruz, A. Gonzalez, M. Valero, and N. P. Topham, "Multiple-
banked register file architectures," in Proc. of 27th International 
Symposium on Computer Architecture, Vancouver, BC, Canada, 
2000, pp. 316-325.  

[9] R. Nalluri, R. Garg, and P. R. Panda, "Customization of Register File 
Banking Architecture for Low Power," in 20th International 
Conference on VLSI Design held jointly with 6th International 
Conference on Embedded Systems, Bangalore, India, 2007, pp. 239-
244, doi: 10.1109/VLSID.2007.58. 

[10] S. Wang, H. Yang, J. Hu, and S. G. Ziavras, "Asymmetrically Banked 
Value-Aware Register Files," in IEEE Computer Society Annual 
Symposium on VLSI, Porto Alegre, Brazil, 2007, pp. 363-368, DOI: 
10.1109/ISVLSI.2007.27. 

[11] R. Sangireddy and A. K. Somani, "Exploiting quiescent states in 
register lifetime," in Proc. of the IEEE International Conference on 
Computer Design: VLSI in Computers and Processors, San Jose, CA, 
USA, 2004, pp. 368-374, DOI: 10.1109/ICCD.2004.1347948. 

[12] A. Aggarwal and M. Franklin, "Energy efficient asymmetrically 
ported register files," in Proc. of the 21st International Conference 
on Computer Design, San Jose, CA, USA, 2003, pp. 2-7, DOI: 
10.1109/ICCD.2003.1240865. 

[13] T. M. Jones, M. F. O’Boyle, J. Abella, A. Gonzalez, and O. Ergin, 
“Energy-efficient register caching with compiler assistance,” ACM 
Trans. Archit. Code Optim, vol. 6, no. 4, Article 13, 2009, DOI: 
10.1145/1596510.1596511. 

112 
 



International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 2, 2025 
 
 
[14] J. A. Butts and G. S. Sohi, "Use-based register caching with 

decoupled indexing," in Proc. of the 31st Annual International 
Symposium on Computer Architecture, Munich, Germany, 2004, pp. 
302-313, DOI: 10.1109/ISCA.2004.1310783. 

[15] D. A. Los and I.V. Smirnov, “Caching physical register file in a 
modern superscalar microprocessor,” (in Russian), in Proc. of the 
61th MIPT Scientific Conference. Radio engineering and computer 
technologies, Moscow, Russia, 2018, pp. 18-19. 

[16] N. Goel, A. Kumar, and P. R. Panda, “Shared-port register file 
architecture for low-energy VLIW processors,” ACM Trans. Archit. 
Code Optim, vol. 11, no. 1, Article 1, 2014, DOI: 10.1145/2533397. 

[17] J. Busek et al., “SPEC CPU2017: Next-Generation Compute 
Benchmark,” in Companion of the 2018 ACM/SPEC International 
Conference on Performance Engineering, Berlin, Germany, 2018, 
pp. 41-42, DOI: 10.1145/3185768.3185771. 

[18] V.P. Nelson et al., “Digital Circuit Analysis and Design,” Prentice 
Hall, 1995, p. 234 

 
 

113 
 


	I. INTRODUCTION
	II. Related Work
	III. Methodology
	IV. Constructing Read-Port-Count Reduction Schemes
	V. Estimating Complexity of the Read-Port-Count Reduction Schemes
	VI. Efficient Read-Port-Count Reduction schemes
	VII. Conclusion
	References

