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Improvement the Accuracy of Attitude Estimation 
of UAV using the Extended Kalman Filter based on 

Particle Swarm Optimization 

Abstract—The issue of Unmanned Aerial Vehicle 
(UAV) attitude estimation has been extensively studied, 
yet researchers continue to seek improvements, 
recognizing that more precise attitude calculations and 
determination lead to enhance UAV control robustness 
and accuracy. This research develops and implements 
an innovative approach combining Particle Swarm 
Optimization (PSO) with the Extended Kalman Filter 
(EKF) to improve UAV attitude estimation. The 
methodology employs raw measurements from 
gyroscopes, accelerometers, and magnetometers. PSO is 
utilized to estimate the noise covariance matrix of these 
measurements, which is then integrated into the EKF 
process to achieve superior attitude estimation results. 
Given that PSO is a global optimization tool, its 
integration with EKF demonstrated superior 
performance compared to the standard EKF. The 
implementation was carried out in a Matlab 
environment, using quaternions to represent UAV 
attitude. The mean and standard deviation (STD) of 
estimation errors were calculated, revealing that the 
PSO-EKF approach significantly enhances estimation 
accuracy compared to using EKF alone. Comparison 
with state of art results using Root Mean Square Error 
of attitude angles, showed that the developed method 
outperformed existed researches in the field of attitude 
estimation.  

Keywords— Attitude estimation, Extended Kalman 
Filter, Particle Swarm Optimization, UAV. 

I. INTRODUCTION 

Recently, there has been growing interest in autonomous 
navigation vehicles due to their potential for critical 
missions such as surveillance, monitoring, and inspection in 
diverse environments, including land, sea, and air. Effective 
control of these vehicles requires accurate knowledge of 
their attitude angles, which can be measured using various 
technologies such as Inertial Navigation Systems (INS). 
Typically, INS relies on Global Positioning System (GPS) 
signals, which are fundamental for autonomous navigation. 
However, GPS signals may experience outages in certain 
environments due to various factors. With the advancements 
in Micro-Electro-Mechanical Systems (MEMS) technology, 
lightweight and cost-effective solutions such as Inertial 
Measurement Units (IMUs) have emerged, particularly for 
lightweight Unmanned Aerial Vehicles (UAVs) [ 1]. 

MEMS-based systems are often integrated with filters to 
calculate attitude angles without relying on GPS. The most 
widely used filter is the Kalman filter, which comes in 
various forms, such as the extended and unscented Kalman 
filters. However, the Kalman filter's approach to attitude 
estimation has limitations due to unknown noise in sensor 
measurements. These inaccuracies require additional 
methods to address the resulting errors, which directly 
impact the calculated angles and, consequently, the control 
algorithms. One of the methods used to mitigate these issues 
is artificial intelligence (AI), particularly Machine Learning 
(ML) techniques. ML approaches have been widely applied 
in fields related to UAVs and autonomous navigation. 
Integrating ML with the Kalman filter is a critical area of 
research, as ML offers diverse approaches, including 
classification, forecasting, tuning, and optimization, each 
with different objectives. Since attitude estimation is a real-
time problem, it requires ML techniques specifically 
designed for real-time applications [ 2- 3]. Machine Learning 
(ML) involves using machines to perform calculations, 
process data, or make decisions, often replacing human 
input. One example of a computational ML method is 
Particle Swarm Optimization (PSO), which is inspired by 
the swarm behavior observed in nature, such as groups of 
fish or birds working together to find solutions. In this 
research, the PSO approach is applied to enhance the 
Extended Kalman Filter (EKF), as will be explained in later 
sections.  

In attitude estimation, sensor data is integrated with the 
Kalman filter to estimate attitude angles. The primary 
challenge lies in the noise present in the measurements, 
which, when integrated, leads to a cumulative error in the 
calculated attitude. In the Kalman filter, sensor noise is 
represented in matrices, which express the covariance of 
measurement errors. Accurate values for these matrices can 
significantly improve the precision of attitude estimation. 
However, in real-world scenarios, noise is not constant and 
exhibits random characteristics, requiring real-time 
estimation. Typically, these covariance matrices are treated 
as constant, which can limit the accuracy of the filter [ 4- 5]. 
Estimating, tuning or correction these matrixes will increase 
the accuracy of attitude estimation. Many methods are used 
for this correction, PSO is adopted in this research.  
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II. RELATED WORKS 

In [ 6], authors implemented non-linear Complementary 
Filter (CF) for attitude estimation in unmanned aerial 
vehicles. The gain parameters of the CF were determined 
using particle swarm optimization (PSO), eliminating the 
need for manual tuning of KP and KI parameters. The CF 
automatically adjusts these parameters when the error 
between the accelerometer-measured attitude and the CF 
exceeds a predefined threshold. The research utilized a 
measurement unit comprising low-cost tri-axial rate gyros, 
accelerometers, and magnetometers based on micro-electro-
mechanical systems (MEMS), without relying on global 
positioning system (GPS) data. The efficiency of the CF 
was evaluated experimentally using reference attitude and 
raw sensor data from a commercial inertial measurement 
unit (IMU). Simulation results demonstrated that the 
proposed PSO-aided non-linear complementary filter 
(PNCF) effectively obtained the required gain parameters 
and exhibited promising performance in attitude estimation. 

In [ 7], authors developed a novel fuzzy-adaptive 
extended Kalman filter (FAEKF) aimed at real-time attitude 
estimation for agile mobile platforms equipped with 
magnetic, angular rate, and gravity (MARG) sensor arrays. 
The filter architecture integrates a quaternion-based EKF 
with an adaptive extension, incorporating innovative 
measurement techniques to assess system vibrations, 
external accelerations, and magnetic distortions. These 
external disturbances are treated as inputs to a sophisticated 
fuzzy inference machine, which employs fuzzy IF-THEN 
rules-based adaption laws to dynamically adjust the noise 
covariance matrices of the filter, ensuring precise and 
resilient attitude estimates. To evaluate the filter's 
performance, a six-degrees of freedom (6 DOF) test bench 
was constructed, enabling the execution of diverse dynamic 
behaviors and the acquisition of ground truth attitude angles 
alongside raw MARG sensor data. Parameter tuning was 
conducted via numerical optimization using measurements 
obtained from the test environment. The comprehensive 
analysis demonstrates that the proposed adaptive strategy 
significantly enhances attitude estimation quality, while 
effectively mitigating the impacts of both slow and rapid 
external perturbations. The versatility of the FAEKF renders 
it applicable to any mobile system requiring accurate 
attitude estimation for localization, particularly in scenarios 
where external disturbances pose significant challenges to 
filter accuracy. 

In [ 8], authors devised two innovative approaches for 
accurately estimating the attitudes of mobile robots by 
integrating low-cost accelerometers and gyroscopes. Firstly, 
a specialized test bench was utilized to simulate various 
dynamic behaviors of wheeled robots while concurrently 
measuring their actual attitude angles and raw sensor data. 
These measurements were leveraged for offline 
optimization of Kalman filter parameters within a 
simulation environment. Secondly, a novel adaptive Kalman 
filter structure was introduced, dynamically adjusting the 
noise covariance values based on the system's instantaneous 
dynamics. These dynamics were characterized by the 
magnitudes of both instantaneous vibration and external 
acceleration. The proposed adaptive solution employed 
fuzzy logic to adaptively modify filter parameters in real 

time. Results demonstrated that the adaptive filter improved 
overall convergence by a notable 10.9% compared to using 
the optimized Kalman filter, affirming its efficacy as an 
accurate and robust attitude filter. Benchmarking against 
other common methods showcased the adaptability of the 
developed filter, which not only competed but also 
surpassed benchmark filters in performance. 

In [ 6], authors applied developed method where the error 
between attitude calculated using accelerometers 
measurement and attitude calculated by CF is exceeds pre-
defined threshold but none of them is considered as 
referenced orientation. In [ 7], authors used accelerometers, 
magnetometers and gyroscopes data as input for correction 
covariance matrix of measurements errors, the used 
vibrations from gyroscopes as input of the developed 
method. In [ 8] as in [ 7], they only used accelerometers and 
gyroscopes. There are many researches in this field to 
enhance the accuracy of orientation estimation of UAV 
without using GPS data for autonomous navigation. Even if, 
existing approaches do not fully meet the requirements. 
This research enriches this field by suggesting using of PSO 
to minimize input to be minimum as possible as it can be, in 
optimal cases, this term should be zero. In this paper, 
developed method is applied when there is an error between 
referenced measurements of accelerometers and 
magnetometer and real measured data without any 
threshold.   

Previous studies [ 9], [ 10], [ 11] and [ 12] explored a 
mathematical model to match the error covariance matrix of 
measurements by utilizing accurate statistical 
characterizations of system noise. This approach relies on 
innovation and residual sequences to estimate the 
covariance matrices of both process and measurement 
noises. The key difference between these works and the 
developed approach in this research lies in the use of PSO. 
In our method, PSO is employed to minimize a specific 
term related to innovation and residual sequences. As will 
be explained in the following sections, minimizing this term 
proves to be more robust than relying solely on 
mathematical models to estimate the error covariance 
matrix, as seen in prior research. 

III. PROPOSED METHOD 

A. Extended Kalman Filter 
Used sensors: A: Accelerometers, M: Magnetometers, G: 

Gyroscopes. The measurement vector is the values 
measured by these devices. The state vector is of EKF 𝒙, it 
contains attitude representation as Quaternion (4 
components) and Gyroscopes drifts (3 drift). Kalman Filter 
for attitude estimation has two phases (in discrete time) 
[ 13]: 

• Propagation or prediction phase: In this phase, the 
state vector is being predicted using the gyroscopes 
measurements using the state process 𝒇 (𝒇 is nonlinear 
function) 

𝒙𝑘− = 𝒇(𝒙𝑘−1+ ,𝑾𝑘)  (1)  
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Where 𝑾𝒌~ 𝑵(𝟎,𝑸𝒌) is state noise that is assumed to be 

white noise with zero mean and process noise with 
unknown diagonal covariance matrix 𝑸𝒌. The sign ‘+’ 
refers to state vector that is outputted from second phase, 
while sign (‘-‘) refers to state vector that is outputted from 
Propagation phase and k is the iteration.  
• Update of correction phase: when new measurements (A and M) are 

arrived: 

𝒁~ = 𝒉(𝒙𝑘−,𝑨,𝑴) + 𝑽𝑘 (2) 

Where 𝑽𝒌 is measurement noise, that is assumed to be 
white noise with zero mean and process noise with 
unknown diagonal covariance matrix 𝑹𝒌. 𝐡 is nonlinear 
function. 

Kalman filter parameters are: 𝑲𝒌: Kalman gain, 𝑷𝒌: 
State Covariance and 𝑯𝒌: Measurement Linearization 
matrix. The matrix 𝑹 is used directly in the calculations of 
Kalman parameters and in real conditions and experiments, 
it is unknown, so wrong value of it will reflects directly in 
the calculations and make the EKF wrongly estimate UAV 
attitude. More details about the model of EKF is in [ 14]. 

B. PSO with EKF 
Particle Swarm Optimization (PSO) is an ML technique 

used to find approximate solutions to complex or 
numerically challenging maximization and minimization 
problems [15]. As previously described, it involves a set of 
particles (or "neurons") that search for solutions within a 
network. These particles are connected through internal 
relations, and the best solution corresponds to the best 
positions in this network. PSO has several key parameters 
[ 16]: 

1. Number of particles: This variable determines the 
number of particles in the swarm. They represent 
potential solutions to predict the matrix 𝑹. When 
number of particles is increased, this can lead to more 
thorough searching and exploration of search space but 
also will increase cost of computations. 

2. Max iterations: Maximum number of iterations that 
the PSO algorithm will run PSO iteratively updates the 
positions and velocities of particles in the search space 
until this maximum number of iterations is reached. 

3. Inertia: This parameter controls how particle's current 
velocity impact its movement. It's applied to previous 
velocity as a weighting factor. 

4. Cognitive parameter: It determines the particle's 
tendency to move towards better position. It has 
impact on the exploration of space of searching by 
emphasizing the particle's own best-known solution.  

5. Social parameter: It controls the particle's tendency to 
move towards the global best position found by any 
particle in the swarm. It facilitates exploitation of the 
search space by incorporating information from other 
particles' experiences. 

In PSO, particles are spread randomly in a 
multidimensional space, each position representing a 
potential solution. As they move, their positions and 
velocities are adjusted based on individual experiences and 
interactions with neighboring particles. The particles 
evaluate each position based on objective criteria, such as 
minimizing a term called the Degree of Matching (DoM). 

Adjustments are guided by each particle's personal best 
position and the best position found by the entire swarm. 
Some particles explore new positions, while others refine 
previously discovered ones. As iterations progress, the 
swarm continuously exchanges information, allowing the 
PSO algorithm to converge on optimal solutions in the most 
promising areas of the search space [ 17].  

The main idea is to use PSO to search for best value of 
correction of matrix 𝐑 to minimize DoM. At each iteration 
of developed model of EKF, attitude is calculated from EKF 
and DoM is computed from new measurements vector and 
EKF calculations. Define Innovation Sequences 𝐈𝐧𝐧𝐤 (Or 
Innovation Adaptive Estimation) as below: 

𝑰𝒏𝒏𝒌 = 𝒁𝒌~ − 𝒉(𝒙𝒌+) (3) 

It is the difference between the measurement vector and 
its estimate according to the estimation of state vector, 𝑰𝒏𝒏𝒌 
represents an additional useful information that is available 
to the filter. Occurrence of bad data first shows up in 𝑰𝒏𝒏𝒌. 
EKF in optimal cases could predict the real measurements. 
In this way and in real cases 𝑰𝒏𝒏𝒌 will show when there is a 
difference between predicted and actual measurement. In 
extended Kalman filter where 𝑰𝒏𝒏𝒌 can be linearized as 

𝑰𝒏𝒏𝒌 = 𝒉(𝒙𝐤−) + 𝐕𝐤 − 𝒉(𝒙𝐤+) = 𝒉�𝜹𝒙𝒌� + 𝑽𝒌 
𝑰𝒏𝒏𝒌 = 𝑯𝒌𝜹𝒙𝒌 + 𝑽𝒌 

(4) 

𝜹𝒙𝒌  is error of state vector. Calculate 𝑺𝒌, the covariance of 
𝑰𝒏𝒏𝒌 which is the sum of two independent stochastic 
processes 

𝐒𝒌 = 𝒄𝒐𝒗�𝑯𝒌𝜹𝒙𝒌� + 𝒄𝒐𝒗(𝐕𝒌) 
𝐒𝒌 = (𝐇𝒌) 𝒄𝒐𝒗�𝜹𝒙𝒌� (𝐇𝒌)𝑻 + 𝐑𝒌 
𝐒𝒌 = (𝐇𝒌)𝑷𝒌(𝐇𝒌)𝑻 + 𝐑𝒌 

 (5)  

𝐒𝒌 can be calculated statistically in real time processing 
using next equation which will be denoted by 

𝑪𝑰𝒏𝒏 = �𝒁𝒌~ − 𝒉(𝒙𝐤+)��𝒁𝒌~ − 𝒉(𝒙𝐤+)�𝑻  (6) 

The main usage of arithmetic covariance is to detect 
rapid changes in variance (case of maneuvering). Arithmetic 
covariance is calculated at every step or within a window. 
Define the term: 

𝑫𝒐𝑴 = 𝑪𝑰𝒏𝒏𝒌 − 𝑺𝒌 (7) 

The term DOM represents Degree of Matching between 
two quantities �𝑪𝑰𝒏𝒏𝒌 ,𝑺𝒌�, and should be zero nominally, so 
the optimization process by PSO is used to keep this term as 
close to zero as possible by changing some parameters, 
Figure 1 below shows the general diagram of optimization 
process.  
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Figure 1: General optimization process EKF 

The output of PSO is vector of six elements, they are 
represented the main diagonal of the matrix ∆𝑹 (three for 
accelerometers noise and three for magnetometers noise). 
PSO was used to adapt the matrix 𝑹 as next 

At iteration k: 
• Start of EKF 
• Propagation phase 
• Correction phase 
• PSO optimization 

• Calculate DoM 
• Search for matrix ∆𝑹 that minimize DoM 
• Return ∆𝑹 

• 𝑹 = 𝑹 + ∆𝑹 
End of iterations 

The full process is shown in Figure 2 

 
PSO 

To minimize DoM

 

Corrected 
UAV Attitude

Update R

Prediction 
Stage

Update stage
A, M

G

Q matrix

R matrix

 
Figure 2: EKF optimization process with PSO 

As shown in last figure, PSO at every iteration of 
algorithm use information form measurements and from 
Kalman filter to correct the matrix 𝑹. 

IV. Results and Discussion 

The simulation was carried out in Matlab environment, 
by modelling the developed algorithm in script file, the 
sampling time was 16 milli-seconds, gyroscopes 
measurements are in radian per seconds, accelerometers 
measurements are in (𝑚. 𝑠−2) and magnetometers 
measurements are in Micro Tesla. the calculations were 
represented by 15 digits after the decimal point. Typical 
extended Kalman filter and PSO-EKF were calculated in the 
same simulation with different values. The execution time 
with PSO was recorded each 1000 samples, the averaged 
execution time was 10.6 seconds for processing 1000 
samples (1000 samples equals 16 seconds in real time). To 
be considered real-time, the processing time must be shorter 
than or equal to the time it takes to acquire the data. In this 
case: 

• The data acquisition time is 16 seconds. 
• The processing time is 10.6 seconds. 

Since processing time 10.6 seconds is less than 16 
seconds (data acquisition), the algorithm can be applied in 
real-time. This means that MATLAB can finish processing 
the data before new data is available for the next batch of 
1000 samples. 

The settings for PSO are: number of particles: 50, 
iterations: 50; inertia: 0.05; cognitive parameter: 1.5; social 
parameter: 5. After setting up all needed parameters, the 
results show that when using PSO, attitude estimation is 
improved and accuracy increased. During the first 
experiment and in accordance with the random setting of 
the PSO. At the beginning of the estimation, the errors are 
too large. It takes some time for them to stabilize, as shown 
in Figure 3 and Figure 4 
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Figure 3: Pitch estimation (Experiment 1) 

 
Figure 4: Roll estimation (Experiment 1) 

At the start of algorithm, it needs time to be stabilized, in 
real application and in this period of time, UAV should not 

move. Figure 5, Figure 6 and Figure 7 show results after 
stabilization of PSO.  
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Figure 5: Pitch estimation (Experiment 1, after 400 seconds) 

 
Figure 6: Roll estimation (Experiment 1, after 400 seconds)  
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Figure 7: Yaw estimation 

Table 1 shows results of EKF and PSO-EKF and 
comparisons between them.    

Table 1: Results comparisons 
 STD (degree) Mean (degree) 
 Roll Pitch Yaw Roll Pitch Yaw 
EKF 3.45 2.21 7.30 1.28 0.74 2.76 
PSO-EKF 1.65 1.81 6.37 0.46 0.73 1.09 
Improvement 52.17 

% 
18.09 

% 
12.73 

% 
64.06 

% 
1.35 
% 

60.05 
% 

In [4] 50.24 
% 

  54.58 
% 

  

 
Comparing results with state of art results in Table 2, 

results of [16] and [17] are mentioned in [6]. 

 
 

Table 2: Comparison with state of art 

 RMSE (rad)  

 Roll Pitch Yaw Average  
PSO-EKF 0.0340 0.0298 0.1128 0.0588 
[ 6] dataset 1 0.0595 0.0526 0.6929 0.2683 
[ 6] dataset 2 0.0799 0.0654 0.0804 0.0752 
[ 6] dataset 3 0.1805 0.1631 1.0025 0.4487 
[ 6] dataset 4 0.0254 0.0174 0.0827 0.0418 
[ 8] best 
results  

 (average) 1.4310  

[ 18] 0.0638 0.0460 0.1030 0.0710 
[ 19] 0.1989 0.1611 0.8088 0.3896 
 

The most important thing is to decrease STD, since if 
there as an error with constant mean, this can be reduced 
with by compensation method, but STD refers how error 
changes around the mean. Results of experiment 2 are 
shown in Figure 8 and Figure 9. In the second experiment, 
PSO parameters were edited manually to obtain fast 
convergence of the algorithm. Fast convergence of the 
algorithm might result in high error but the whole 
performance remains better that typical extended Kalman 
filter. 
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Figure 8: Pitch estimation (Experiment 2) 

 

 
Figure 9: Roll estimation (Experiment 2) 

This means that the attitude estimation accuracy has been 
improved compared to the typical EKF.  The simulation 
showed that the accuracy is increased, the data contains 
many different phases of motions, this includes static, 
dynamic and maneuvers. In static as shown in first 
experiment, the algorithm fails because it tries to make the 
term DoM zero even if there a noise but less that than the 
level that make the filter diverges. but after a tuning of the 
parameters, there was no divergence. By Zooming in the 
results (Figure 10, Figure 11 and Figure 12), the area of 
zoom contains at first non-static mode with maneuvers then 
there is a static flight (from 1100 to 1175 seconds), in both 
cases the developed algorithm tracks referenced values and 
better that EKF 
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Figure 10: Zooming in Roll angle 

 
Figure 11: Zooming in Pitch angle 

 
Figure 12: Zooming in Yaw angle 

In addition, matrix R is updated each sample for 
Accelerometers and Magnetometers, it can be said that 
features of measurement noise are estimated also as shown 
in Figure 13. 

 

 
Figure 13: Features of measurement noise 
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From the figure above, where matrix R is clearly has high 

values, these are considered as features to estimate if there 
is a maneuver of not. According to that, the data of UAV 
tells that UAV made more than 7 maneuvers. And where 
there a maneuver the PSO edited the value of R matrix. 

V. Conclusion  

In this paper, a novel approach of using PSO to aid EKF 
for attitude estimation of UAV is implemented, the main 
findings are that the accuracy when using PSO adapting 
EKF is higher than the EKF alone, besides that, the PSO 
parameters can be edited for fast convergence. The features 
of noise also can be predicted since PSO is working to tune 
matrix of measurement noise. In future, more tests can be 
achieved in this field such as correction of matrix 𝑸, tuning 
it or using only accelerometers and gyroscopes.  
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