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Comparative analysis of Jacobi and Gauss-Seidel
Iterative methods

P. V. Khrapov, N. S. Volkov

Abstract — The paper presents a comparative analysis of
iterative numerical methods of Jacobi and Gauss-Seidel for
solving systems of linear algebraic equations (SLAESs) with
complex and real matrices. The ranges of convergence for both
methods for SLAEs in two and three unknowns, as well as the
interrelationships of these ranges are obtained. An algorithm
for determining the convergence of methods for SLAEs using
the complex analog of the Hurwitz criterion is constructed, the
realization of this algorithm in Python in the case of SLAESs in
three unknowns is given. A statistical comparison of the con-
vergence of both methods for SLAEs with a real matrices and
the number of unknowns from two to five is carried out.

Keywords — iterative methods, system of linear algebraic
equations, Jacobi method, Gauss-Seidel method, stable
polynomials, Hurwitz criterion.

I. INTRODUCTION

In the modern world, a large number of both applied and
theoretical problems in various fields of science and
technologies are reduced to the problem of finding exact
solutions of various SLAEs or solutions that maximally
approximate the exact ones, numerical methods for solving
which have been developing over the years due to the huge
number of areas of their application [1], [2].

A special place in the theory of SLAES’ solutions is
occupied by the simple iterative method, which is an
alternative to direct methods of finding SLAES’ solutions. At
the same time, based on the simple iterative method, new
methods for solving SLAEs are developed, which are an
improved version of the classical method [3], [4], [5].

Some of these, based on the simple iterative method, are
the Jacobi and Gauss-Seidel iterative methods for solving
SLAEs, the meaning of which is to allocate elements on,
above and below the diagonal of the original SLAE’s matrix
as separate matrices and conduct the simple iterative method
using them instead of the original, which often greatly
simplifies the calculations [6], [7]. Iterative Jacobi and
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Gauss-Seidel methods, also being classical iterative methods
of solving SLAEs, have recently undergone various
improvements, some of which are described for example in
[71, [10], [12], [13], [19], [201], [21], [22], [25]. Nevertheless,
many modern alternatives to the classical Jacobi and
Gauss-Seidel methods are based on sufficient condition of
their convergence to an exact solution in the case of diagonal
pre- dominance in the original SLAES’ matrices, without
considering the cases without diagonal predominance when
these methods can also converge to an exact solution, and are
also described only for special types of matrices [23], [24].

The convergence of iterations to an exact solution is one of
the main problems, since, as a consequence of the classical
simple iterative method, the Jacobi and Gauss-Seidel
methods not always converge to an exact solution, and have
convergence criteria following from a similar criterion for the
simple iterative method [6]. The search for convergence
ranges and the theoretical comparison of the effectiveness of
the methods based on it is the main task of this work.

The convergence criteria obtained in [6], according to
which the eigenvalues of the matrices in the method should
be less than one in absolute value, are reduced to the problem
of finding the roots of the algebraic polynomials of degree n
with complex coefficients inside the unit circle, various
solutions of which are described for example in [8], [9], [11],
[17], [27], [28], [29], [30], [31], and for polynomials of a
special kind in [16], [18].

It can be solved by making a fractional Ilinear
transformation that translates the interior of the unit circle of
the complex plane to the left half-plane and reduces it to the
study of stability of the polynomial [11]. In [11] this problem
is considered for polynomials with real coefficients of the
second and third degree.

In this paper, a comparative analysis of two methods using
the examples of SLAESs in two and three unknowns is carried
out by considering the ranges of their convergence, which are
obtained under the assumption that the boundary of each
range is formed when at least one root of the corresponding
equation has a unit absolute value, and the rest does not
exceed one, and all points are contained inside the range, for
which all roots have absolute values less than one.

There is described the general convergence criteria for
each method in paragraph 2.

In paragraph 3, the convergence ranges of the methods for
SLAEs with complex coefficients in two unknowns are
obtained, and the conclusion of their comparison is given: for
the Jacobi method the convergence range and its boundary
are found when substituting roots with absolute values less
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than one into the corresponding equation, and for the
Gauss-Seidel method by directly solving the equation.

In paragraph 4, by a similar substitution of roots with
absolute values not exceeding one, the boundary conditions
of the methods for SLAEs with complex coefficients in three
unknowns are obtained, and on their basis the convergence
ranges in the real case are obtained, for which a comparative
analysis is given.

There is described a general convergence check method
for SLAEs with complex matrices based on [11] and [14],
and a general comparison of both methods is made in
paragraph 5.

In paragraph 6, a statistical comparison of convergence of
both methods for SLAE with real matrix is carried out using
mathematical modeling.

Il. CONVERGENCE CONDITIONS OF THE JACOBI AND
GAUSS-SEIDEL METHODS

When solving a system of linear algebraic equations

AX =b (1)
in accordance with the Jacobi method, the matrix A of the
original SLAE is represented as a sum:

A=L+D+R
detA=0
where L, D, R are, respectively, the matrices with
subdiagonal, diagonal, and overdiagonal elements of matrix
A, and then there is a system obtained from the original
SLAE (1):
Xx=-DY(L+R)X+D"

for which the simple iterative method converges if all roots of
the equation

Aa, &, @,
Ay /16122 8y, ~0 @)
a‘nl anZ T /Atann

have absolute values less than one [6]; &; - elements of the

original matrix A, &; €.

Similarly, the Gauss-Seidel method transforms the original
SLAE (1) to a system:

X=—(L+D)™*R%x+ (L+D)*b

for which the simple iterative method converges to an exact
solution if all roots of equation

lan a, t a,
/1321 ;Lazz e Ay, -0 3)
Aa, Aa, - Aa,

have absolute values less than one [6], a; € .

When the dimension of the original SLAE is small, we can
find the convergence ranges of the methods by directly
solving the equations (2) and (3). Let us show this for the

cases of SLAEs in two and three unknowns, which often arise
in applied research.

I11. SYSTEM OF LINEAR ALGEBRAIC EQUATIONS IN TWO
UNKNOWNS

A. Jacobi method
The equation (2) has the form:

Aa,  ay,
a, Aay,

and for the convergence of the method, it is necessary that its
roots lie inside the unit circle.

In the general case a, /11‘2 el], and the system (2) is

= /123113-22 —a,ay = 0 4)

equivalent to equations
(A-re”)(A-re”) = 0
A2+ A(-1e” —r,e”) +rre®e> =0 (5
where e, r,e'% are the roots of equation (4), I, I, <1.
Comparing (4) and (5), we obtain the system (a,,a,, # 0,

since @,,, a,, are elements of the diagonal matrix D):

re'” +re =0

o a (6)

o[l a12 21

rre”e? = -212=

a11a22

from which follow:
n=r
a
L, =r’= S g
a118‘22

|a12a21| < |a11a22 ()

The condition (7) defines the convergence range for the
Jacobi method in the general case: the absolute value of the
product of the off-diagonal elements of the matrix A of the
system (1) must be less than the absolute value of the product
of its diagonal elements for the method to converge in the
case of an SLAE in two unknowns.

B. Gauss-Seidel method
The equation (3) has the form:

ﬁ’all a12 2
=A%a,a,, —Aa,a,, =0 8
/13.21 /13.22 a’ll 22 a12 21 ( )
and its roots
4y =0
a12a21
ﬂ'z — 12721
a11a22

must have an absolute value less than one (a,,a,, # 0, since

a,,, a,, are diagonal elements of triangular matrix L+ D).

Since one of them is zero, only the second root is checked
for the convergence condition, for which, in order for its
absolute value to be less than one, it is necessary to fulfill the
condition
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|a12a21| < |a11a22| (9)
Thus, both the Jacobi method and the Gauss-Seidel
method for SLAES in two unknowns have the same range of
convergence (9).

IV. SYSTEM OF LINEAR ALGEBRAIC EQUATIONS IN THREE
UNKNOWNS

A. Jacobi method
The equation (2) has the form

A°8y,80,855 — A(8y58,)85 + 8,38,,85, + 83,8538,;) +
+ (3858, +8,,88,) = 0 (10)

and for convergence of the method, it is necessary that all its
roots lie inside the unit circle.

Let’s divide it by @,,8,,8,, (there are no zero elements on

the diagonal of matrix A, since matrix D must have an
inverse):

/13 + —3385,85, — A3y, 85, — 31,8553y, A+
8,85,
+ Q385,38 + 31,8553 =0
a,85,85;

Denoting
p= 838,85 — 8p38, 83, — 81,8538,
838,85,
— 8138378y, + 84,8558y
B8yl

we obtain the canonical cubic equation:
A+pi+gq=0 (11)
In the general case its coefficients and roots are complex:

P, q, A,s€ll.
We find the convergence range of the method expressed in
terms of p, g el] by obtaining the equations of its

boundaries and combining them.

We obtain the equations of the boundaries under the
assumption that there is at least one root of the equation (11)
on boundaries, the absolute value of which is equal to one,
and the interior points of the range are those in which the
absolute value of each root is less than one. The boundary is
not included in the convergence range, since at least one of
the roots has a unit absolute value on it, which contradicts the
convergence condition [6]. Consider several cases.

Find the equation for the first boundary of the convergence
range: let one of the roots of the equation (11) have a unit
absolute value, and the other two roots have an absolute value
not exceeding one:

(A—e")A-re”)(A-re”) =0 (12

A%+ 2% (" - —1,e”) + A(r,e"e'” +re%e +

q

+,1,e%2e) —r,r,ee'”e" = 0
r, <1

Comparing (11) and (12), we obtain a system of equations
for the first boundary of the convergence range:

e +1,e” +re” = 0

re'%e” +ree'” +rree” =p  (13)
—1,re%e”e =q
from which follow:
o<1 (14)
arg(q) =7+ + @, + 9, (15)
re'” =-r,e” —e” (16)

The first equation of the system (13) has a geometric
interpretation (fig. 1)
NP

¥3

\
\\“5
\
\

rs
w2 \T2

Fig. 1. Geometric interpretation of the first equation of the
system (13).

Substituting (16) into the second and third equations of the
system (13), we have expressions:

p — _ei‘plei(/’l _ rzei‘Plei(/’Z _ rzzei‘pZei(/’z
_ i Al pip 2410 Ay Al
q=rere"e 2+r2e ee"
comparing which, we obtain the equation of the first

boundary of the convergence range of the Jacobi method in
the general case:

p=-qe " —e’" (17)
from which follow the relationships of absolute value and
argument for P and d:

|p| :\/rq2 + 1 + 2r, cos(p, —3¢,)
r sin(p, —@,)+sin(2
arg(p) = arctan(—® ((/7q ?) (2¢)

) (19
Iy COS((Pq — @) +€0s(2¢,)

The relationships (18) and (19) show that the absolute
value and argument for P depend on three parameters - the

(18)

absolute value Iy, the argument ¢;, and the argument @,
the last of which depends not only on ¢, (15), so we will take

the argument @, as a parameter to visualize the absolute
value and argument for P .

Let us take for example ¢, =0and ¢, = 7 (we use these
parameters for further visualization of the special case of
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SLAE with real matrix when at least one of the roots of the
equation (11) is real): at ¢, = 0, according to geometrical
considerations (fig. 1) and (15)

Py =P, +§03+7Z'€|:—7Z',—%:|U[%, 7Z':| (20)

p=—q-1 (21)
Similarly, when ¢, =7
T
(pq=¢2+§03+72'+72'6|:—3,5} (22)
p=q-1 (23)

The picture of the absolute value (18) in this case is as
follows (fig. 2):

«10°10

Fig. 2. Dependence of the absolute value |p| at the
boundary (17) at @, =0 (Re(q) <0)and ¢, =7 (Re(q) >
0).

To find the second boundary of the convergence range,
consider the case when two roots of the equation (11) on the
complex plane have axial symmetry with respect to the line
passing through the vector of the third root (the case when
two roots are complex-conjugate and the third is real is a
special case of this case), and the roots located symmetrically
have a unit absolute value, and the third root has an absolute
value not exceeding one.

This case can be considered as a rotation of the system of
vectors of roots of the equation on the complex plane from

the zero angle by the angle ¢,, which is the argument of the
first root: taking into account that before the rotation by the
angle ¢, one root was real, and the other two roots were
with -,
respectively, after the rotation the picture on the complex
plane will be as follows (fig. 3, fig. 4):

Im
N

complex-conjugate arguments @, and

ReA

v

Fig. 3. Location of roots of the equation (11) on the
complex plane before rotation.

ImA
.

Fig. 4. Location of roots of the equation (11) on the
complex plane after rotation.

(;L_rleir/)l)(i_ei(r/)zwl))(l_ei(—rﬂzwl)) =0
n<1

Opening the brackets and comparing (24) with equation
(11), we obtain the system for the second boundary of the
convergence range:

ei(22te) | ail=ppter) | rleir/a =0

(24)

elin 4 rlei(wwz)eiwl + r-lei(‘ﬂi‘(ﬂz)eifﬂl =p (25

—1,e** =

from which follow:
lo| <1 (26)
rle“”l — _@i@ta) _piletar) 27)

Let’s substitute (27) into the second and third equations of
the system (25):

p = —e2i(¢1+¢2) _ eZi(/’l _ eZi((/’r(/’z) (28)
q= e2i¢1 (ei(aawz) + ei((”l_(ﬂz))
qe’Zi‘/’l — ei(¢’1+‘/’2) + ei(¢’r¢’2) (29)

Comparing the square of the expression (29) and the
expression (28), we obtain the equation of the second
boundary of the convergence range of the Jacobi method in
general case:

p — _qu—Ai(pl + eZi(pl (30)
arg(q) = 3¢p +7 (31)

from which we find the relationships of absolute value and
argument for P and d subject to the condition (31):

[p|= 1-1"= 1-[af 2

2 2
arg(p) = 2¢ =Zarg(Q) -2 7 (33)

When ¢, € [-7; 7], the picture for the absolute value
(32) is as follows (fig. 5):
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(11

TSN AT
0.0 Relq)
Im(g) -0.5 &

-1.0-10

Fig. 5. Dependence of the absolute value |p| on g.

It follows from (31), (33) that when ¢, =+, arguments
arg(q) =arg(p) =0

are in the same phase corresponding to the real case, and
when ¢, =0

arg(q) =
arg(p)=0

the arguments are in antiphase corresponding also to the real
case ( P is positive, 4 is negative).

In addition, for the first bound (17), it follows from (19)
that for ¢, €{0,£7} and ¢, €{0,+7} as in the case of
the second bound:

arg(p) € {0, £}

Hence, when at least one of the roots of the equation (11) is
real, the cross section of the convergence range boundaries
shown in the figures (fig. 2, fig. 5), at Im(q) =0, can be
combined into one general boundary of the convergence
range of the Jacobi method in the real case (fig. 6) (by getting
rid of absolute values, part of the boundaries, according to
(21) and (23), moves to the area of negative values of P):

Fig. 6. Boundary of the convergence range of the Jacobi
method for the real case.

In particular, when @, €{0,£7}, the equation (30) takes
the form of a parabola:
p=q°+1
Thus, the boundary of the convergence range of the Jacobi
method in the general complex case is the union of the sets of

points satisfying the equations (17) and (30) and the
condition:

jaf <1

In the real case, when &; € A; P, Qare real numbers,

and the roots of equation (11) are either all real or two of
them are complex-conjugate, equations (17) and (30) form
the following boundary of the convergence range (fig. 6):

p=-q-1
p=q-1
p=—q"+1 o
-1<qg<1

The boundary, due to the above assumptions that it
contains at least one root of the equation (11) whose absolute
value is equal to one, does not belong to the convergence
range. The convergence range consists of the set of points
bounded by the boundary (34), which does not belong to this
range, so for the convergence range, given the conditions (14)
and (26), it follows that:

-1<q<l1

Let’s show that the area in the figure (fig. 6) can be filled

completely:

438y 8558y A5,3y

p — —
a11a33 a'22 a33 a1la'22
- _ a13a‘32a'21a'22a31 _ a12a23a31a11a‘32 _ a128‘21
a11a22a33a21a32 a11a22a33a12a31 a11a22
Let’s denote:
aZl
y-lu
&,
t=da
8y
- _ 8385,8y, Xt — 8838y, l_i
a11a22a33 a11a22a83 t Xy
Assuming that:
Xt = % _a (35)
t=0
Xy = a’
1
p=-a0-— (36)
a

X, Y, tare independent of each other, so it is always
possible to choose the coefficients of the matrix A of the
system (1) such that the condition (35) is satisfied and the line
(36) is obtained. At the same time, P and O depend on
three more parameters on which X, Y, t do not depend, so it
is possible to choose P and g such that they lie in the
convergence range. Thus, we can construct any number of
lines of the form (36), some of whose points lie inside the
convergence range labeled in the figure (Fig. 6). The set of
such lines completely intersects the convergence range.
Accordingly, it is always possible to find a SLAE for which
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P and Q lie within the convergence range of the Jacobi
method.

B. Gauss-Seidel method

The equation (3) has the form:

/l3a11a22a33 + 12 (a‘21a13832 — 838,85 —

—83,8,8y; — Ay A558y,) + 48,8585 =0 (37)
and the method converges if all its roots lie inside the unit
circle.

One of the roots of the equation (37) is zero, and the other
two roots are found from the quadratic equation:

Aa+Ad+b=0 (38)
where
d= 851838, — &y38,,83 — 85588y — 8y 8338,
a = 8,858
b=a,a,a,

For the Gauss-Seidel method, we find the convergence
range, given that within it all roots of the equation (38) have
an absolute value not exceeding one.

In the general case @,b,d, 4, , €[J and the equation (38)
is equivalent to equation:
al’ —la(re" +re":) +arree = 0
O<rn, <l
comparing it with (38), obtain the system:
—are'” —ar,e” =d
{arlrze“/’le“”z =b

which defines the convergence range of the Gauss-Seidel
method in the general case, and from which it follows that in

(39)

the convergence range (@ # 0, since @, are the diagonal
elements of the triangular matrix L+D, i €{l,2,3}):
b

a

and the boundary of the convergence range (39), assuming
that at least one of the roots of the equation (38) has a unit

<1 (40)

absolute value on it (let I, =1), is given by the conditions:
d =—ae'* —be™
ar,e'e'z =b
0<r,<1

(41)

d b
For d, =— and b, =— on the boundary (41), we can
a a

also find the relationships between absolute values and
arguments:

d,=—€" —be™

d, =—cosg, — 1, cos(p, —¢)—i(sing, +1, sin(g, —¢))

Gy, =P+ P,
|d,| = \/1+ rbf +2r, cos(¢;, — p,)

(42)

sing, +1, sing,

arg(d,) = arctan( (43)

OS¢, + 1, COS,

In particular, when the matrix A of the system (1) contains
real coefficients, a,0b,d €[], solving directly the quadratic
equation (38) and applying the convergence criterion of the
Gauss-Seidel method, taking into account the condition (40),
we obtain the convergence range of the Gauss-Seidel method
in the case of real roots of the equation (38):

|d| <|a+b|
b

a

and in the case of complex-conjugate roots of the equation
(38):

44
<1 (44)

O<E<1
a

Note that in the latter case, the condition
|d| <|a+b|
follows directly from the condition (45) and the negativity of
the discriminant of the equation (38): d2 < 4ab.
Therefore, the system (44) is a single range of
convergence of the Gauss-Seidel method in the case of
real matrix elements of the system (1).

The first condition of the system (44) is interpreted as a
segment d on an infinite line.

Note that the conditions (44) are consistent with the
boundary (41).

Unlike the Jacobi method, the convergence range of the
Gauss-Seidel method in the case of real coefficients of the
equation (38) is not constant, and the length of the above
segment can vary depending on the parameters @ and b,

Let’s compare the convergence ranges of both methods in
the case of real coefficients of the system (1). For this
purpose, we construct the convergence range bounded by the
boundary (34) and the range (44) on the same coordinate
plane qOp. The parameters P and 0 for the Jacobi

method and d,a,b for the Gauss-Seidel method are related
by the relation:

(45)

d=(p+Qg)a-b
substituting it into (44), we obtain:

|(p+q)a—b|<|a+b|
b

a

Expanding the absolute values in the first inequality of the
system (46), we find that one of the boundaries of the
convergence range of the Gauss-Seidel method is always the
line

46
1 (46)

p=-q-1 (47)
which is also one of the boundaries (34) of the convergence
range of the Jacobi method, and the second one is also a
straight line, which has the following form:
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a+2b

p=-0+

It also shows that the size of the convergence range of the
Gauss-Seidel method depends on the parameters a,b.

Moreover, at some values of these parameters the
convergence range of the Gauss-Seidel method can partially
pass through the convergence range of the Jacobi method,
and at other values it can completely contain it.

From the second inequality of the system (46) follows:

a+2b
-1< <3
a
so0, the convergence range of the Gauss-Seidel method on the
plane qOp is a part of this plane, which is always bounded

from below by the line (47), and, depending on the particular
case, bounded from above by a line parallel to it, the
uppermost of which is the line

p=—-0q+3
Thus, together the convergence ranges of each method on
the same plane qOp are as follows (fig. 7):

Fig. 7. Convergence ranges of methods on the plane
gOp. The band & is the maximum (with upper boundary

p = —Q+ 3) convergence range of the Gauss-Seidel

method; the area ABCD is the convergence range of the
Jacobi method.

According to fig. 7, the advantages of the Gauss-Seidel
method over the Jacobi method when the system (1) has real
matrix elements are obvious (in the case in fig. 7, the
convergence range of the Jacobi method is entirely contained
in the convergence range of the Gauss-Seidel method),
especially when the parameters P and 0 have large
absolute values - then the Jacobi method does not converge.
Nevertheless, the upper bound of the range for the
Gauss-Seidel method varies depending on the parameters a
and b, so if the iterative process of the Jacobi method

converges for the SLAE, it does not mean that the iterative
process of the Gauss-Seidel method converges.

Let’s give examples of constructing the convergence range
of the Gauss-Seidel method in coordinates qOp to
demonstrate how it varies depending on the parameters a
and b, and in the same coordinates we construct the

convergence range of the Jacobi method for clarity.
Example 1.

Let the parameters a =2, b =1, then the convergence
range of the Gauss-Seidel method has the form:

2(p+a)-1<3
b :£<1
a| 2
thus:
a+2b _
a

Then, by analogy with fig. 7, the convergence ranges for
each method on the plane qOpP look as follows (fig. 8):

15 ~

1 NG

_the
th
_the

the

osp

2
¥l o
0.5

-1

N

15 =
15 -1 5 0 05 1 15

q
Fig. 8. Convergence ranges of Jacobi and Gauss-Seidel
methods at parameters a=2 and b =1.

The figure 8 shows that the convergence range of the
Jacobi method lies entirely within the convergence range of
the Gauss-Seidel method, so in this particular case of

parameters @,b for any SLAE for which the Jacobi method

converges, the Gauss-Seidel method also converges, but the
converse is not true.

Example 2.

Here is an example of a SLAE in three unknowns, for
which the Jacobi method converges, but the Gauss-Seidel
method does not converge:

8 6 -4
A=-9 8 6
4 -5 3
In this case the parameters are as follows:
a=-192
b=144

then the convergence range of the Gauss-Seidel method has
the following form:

[-192(p +0q) —144| < 48
b| [|144

—|=l==<
al [192
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a+2b 1

a 2
By analogy with fig. 7, we obtain the following picture of
convergence ranges for both methods on the plane qOp
(fig. 9):

15
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Fig. 9. Convergence ranges of Jacobi and Gauss-Seidel
methods at parameters a = —192 and b =144.

This range does not satisfy the parameters P, d, which in
this particular example for matrix A are equal to:

From the figure 9 it is obvious that this point (P, () does
not belong to the convergence range of the Gauss-Seidel
method on the plane qOp, but it belongs to the convergence

range of the Jacobi method.

In addition, in this particular case we see that the
Gauss-Seidel method does not converge in most of the
convergence range of the Jacobi method, but it can converge
at large values of P and 0, while the Jacobi method does
not converge at large values of P and 0.

V. THE GENERAL CASE OF SYSTEMS OF LINEAR ALGEBRAIC
EQUATIONS WITH COMPLEX MATRICES

The convergence check of each method is an investigation
to find all roots of a polynomial of degree N inside the unit
circle, which can be transformed to a stability study problem
[11].

In general, a polynomial of degree N with complex
coefficients is obtained from the determinant equations (2) or
©F

f(1) =aA"+aA" " +..+a,=0, a, =0 (48)

For convergence of the method to which the given

polynomial corresponds, it is necessary and sufficient that all

its roots lie inside the unit circle, for which, in turn, it is
necessary and sufficient that the polynomial:

f(z) =a,(z+ D" +a,(z+ D" (z-1) +a,(z+ )" *(z-1)* +...

+a,(z-1)"=0
obtained from (48) be stable [11].
In general, to check its stability, we can use the complex
analog of Hurwitz’s stability criterion [14]: let there be an

arbitrary polynomial of degree N with complex coefficients,
the stability of which should be investigated:

f(z) =d,z" +d,z2" " +...+d,
it’s equivalent, under the assumption that dO #0, to the
polynomial whose first coefficient is equal to one:

: d, . d
f(z) =2"+L2" 4.+ (49)
d d,
Replacing in (49) the variable Z by a purely imaginary
number i@, @ €], we have the polynomial:
o . d, . . d
fliow) = (io)"+-2(o)"" +..+-1
d, d,
which, by raising the multiplier i of each summand to the
appropriate degree and separating the purely imaginary
elements from the purely real ones, is represented as the sum
of two polynomials with real coefficients

f(iw) =g(o) +ih(o)
for which, according to [14], if the degree of the polynomial
(49)is n=2m:

d= (-D)"g
h= (-<)™*h
if n=2m+1:
g= (-)"h
h=(-D)"g
Let

n n-1
B=Db,x"+bx"" +...+Db,
be an arbitrary polynomial of degree N with real coefficients
with positive prime factor bo, and let

n-1 n-2
C=c X" +CX ™ +..+C 4

be an arbitrary polynomial of degree at most n —1 with real
coefficients.
Definition. Square matrix

b, bb b, b -~ O
0 ¢, ¢ , - 0
0 b , - 0
0 0 ¢ ¢ 0
0 -~ b, b - b
0 - 0 ¢ C. 4

of order 2n is called the Hurwitz matrix of polynomials B
and C, and its principal minors of even order are called the
Hurwitz determinants of polynomials B and C.

The complex analog of the Hurwitz stability criterion:
polynomial of degree N

f(z) =2" +ﬂz”’1+...+$: 0
dO dO

with complex coefficients and a unit (real and positive, but
not necessarily unit) coefficient at the highest degree is stable
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if and only if all Hurwitz determinants of polynomials § and
h are positive.

In particular, when all coefficients of the resulting
polynomial are real, we can use the classical Rouse-Hurwitz
stability criterion for polynomials with real coefficients, or
other similar [15] criteria to check stability.

Thus, in general, to check the convergence of the Jacobi
and Gauss-Seidel iterative methods, in order to avoid a direct
search for the roots of a polynomial with complex or real
coefficients, it is necessary to reduce it to a new one, which is
checked for stability, which can be done using a computer by
the above method. This method of checking convergence is
especially relevant when the initial SLAEs have a large
dimension, because of which we obtain equations of large
powers, the solution of which is often very cumbersome.

Let’s show that the range bounded by the boundary (34) is
also obtained by applying the described method of checking
convergence through the complex analog of the Hurwitz
criterion for a polynomial with complex coefficients:

f(1) =A%+ pi+q
k(z) = (z+ D*+p(z+ D(z-1)*+q(z-1)°
k(z) = A+p+q)2°+ 3-p-39)2° +
+(B3-p+39)z+(1+p—Qq)
Assuming that 1+ p +q # 0, divide the last polynomial
by this sum

k(z) 3P4, 37pt3g, 1tpog
1+p+q 1+p+q 1+p+q

K(iw) =—iw’—>—P=34p, 3-p+30;,  1+p-d
1+p+q 1+p+q 1+p+q
Let’s separate the real and imaginary parts

|Z(|W) = (_ Reﬂwz — |mww+ Rew) +

1+ p+q 1+ p+q l+p+q
+i(_W3_|mMWZ+ Reww+ |m1+ﬂ)
1+ p+q 1+ p+q 1+p+q
g(W):_ReMWZ_|mww+ Re“ﬂ
1+ p+q 1+ p+q 1+p+q
h(W)=—V\/3—|mmWZ+ Re>=P*3 1 it P
1+ p+q 1+ p+q 1+ p+q

The degree of the polynomial IZ(z) is odd, so

3-p-3q . o 3-p+3q, | 1+p-q

g=-hw) =w’+Im
1+p+q 1+p+q 1+p+q

h=—g(w) _Re>TP=89 e 32P*30 pelt P
1+ p+q 1+ p+q 1+ p+q

The Hurwitz matrix for polynomials §, h has the form:

1 m3~P=30 g 3-p+3a 1rp-g 0 0
1+p+q 1+p+q 1+p+q
0 ReiP=31 3-p+33 . lvpd 0 0
1+p+q 1+p+q 1+p+q
0 1 m3=P=%4  _g8-p+3a _1+p-g 0
1+p+q 1+p+q 1+p+q
0 0 ReSP=% |, 83-p+30 g 1vp-g 0
1+p+q 1+p+q 1+p+q
0 0 1 m37P=30  _ge8-p+3a 1vp-g
1+p+q 1+p+q 1+p+q
0 0 0 R 3-p-3q m3—p+3q _R 1+p—q
1+p+q 1+p+q 1+p+q

When finding the convergence range in the real case,
equating all imaginary elements in the obtained Hurwitz
matrix to zero, we obtain the corresponding Hurwitz matrix,
the principal minors of even order of which give the
conditions we obtained above from the boundary (34).

In general, to check the convergence of the Jacobi method
for a particular SLAE in three unknowns (in our case), we can
program the described algorithm. For example, in the Python
language:

import numpy as np

def complex_gurvic(p, q):
a=(3-p-3%x)/(1 +p+q)
b=(@-p+3xQ/(1 +p +q
c=0+p-q@/ +p+q
dl = np.array([[1, a.imag, -1*b.real, -1*c.imag, 0, 0],
[0, a.real, b.imag, -1%c.real, 0, 0],
[0, 1, a.imag, -1xb.real, -1*c.imag, 0],
[0, 0, a.real, b.imag, -1*c.real, 0],
[0, 0, 1, a.imag, -1*b.real, -1x*c.imag],
[0, 0, 0, a.real, b.imag, -1*c.realll)
deterl = np.linalg.det(d1[0:2, 0:2])
deter2 = np.linalg.det(d1[0:4, 0:4])
deter3 = np.linalg.det(d1)
if deterl > 0 and deter2 > 0 and deter3 > 0:
print('The polynomial is stable. The method converges.')
else:
print('The polynomial is unstable. The method does not
< converge.')

In general, the following conclusion can be made about the
comparison of convergence of the two methods: in the
equation (3) for the Gauss-Seidel method, it is always
possible to take A from the last line beyond the sign of the
determinant, thus lowering the degree of the polynomial
whose stability is to be investigated by one, which is not
always possible for the Jacobi method according to the
equation (2). Thus, for SLAEs in n > 2 unknowns with

complex matrices, in general case, the polynomial, whose
stability should be investigated, obtained for the Jacobi
method, has degree by one more in contrast to the analogous
polynomial for the Gauss-Seidel method.

VI. STATISTICAL COMPARISON OF CONVERGENCE OF JACOBI
AND GAUSS-SEIDEL METHODS

100000 random matrices of SLAEs (1) with real matrix
elements that are uniformly distributed random variables on
the interval [—100; 100], with the number of unknowns from
two to five, for each of them the well-known convergence
criteria of each method were checked, then for each number
of unknowns the number of cases in which both methods
converge, only the Gauss-Seidel method converges, only the
Jacobi method converges was determined. The obtained data
are summarized in the table 1.

Table 1. Convergence results of Jacobi and Gauss-Seidel

methods
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The Gauss-Seidel The Jacobi method
Number of Both method converges,
methods converges, but the | but the Gauss-Seidel
unknowns A
converge Jacobi method method
does not converge does not converge
2 49916 0 0
3 11818 7521 1095
4 1436 3411 528
5 111 726 76

The data obtained in the table for the number of unknowns
n>2 confirm the conclusions that, in general, the

Gauss-Seidel method converges much more often than the
Jacobi method, but the convergence of one of the methods
cannot guarantee the convergence of the other. At the same
time, we also see that as the number of unknowns in the
SLAEs increases, both methods converge much less
frequently, which is consistent with the above complex
analog of the Hurwitz criterion.

Note also that in the case of SLAEs in two unknowns, the
data from the table 1 confirm the conclusions that in this case
both methods converge in the same way - if one converges,
the other converges as well.

VII.

The found boundary conditions in the complex case, as
well as convergence ranges in the real case allowed us to see
the picture of convergence conditions of Jacobi and
Gauss-Seidel iterative methods and on this basis to make a
comparative analysis of the effectiveness of each method: if
in the case of square matrices of SLAES in two unknowns
both methods converge equally effectively, in the case of
matrices of SLAEs in three and more unknowns methods
have a noticeable difference in the convergence conditions -
with increasing number of unknowns in SLAEs, the
Gauss-Seidel method is noticeably more effective.

For example, in the case of an SLAES’ matrices in three
unknowns, when the convergence ranges for both methods
are plotted for the real case on the same coordinate plane, it
can be seen that in the general case the Gauss-Seidel method
has better convergence than the Jacobi method, since its
convergence range is bounded by straight lines, but infinite in
contrast to the convergence range of the Jacobi method, one
of whose boundaries even enters the boundary of the
convergence range of the Gauss-Seidel method. However, as
it has been shown, the convergence range of the Gauss-Seidel
method depends on the parameters that do not always give a
full convergence range of the Jacobi method into the
convergence range of the Gauss-Seidel method, because of
which there may be situations when iterations converge to the
exact solution by the Jacobi method but do not converge by
the Gauss-Seidel method. Statistical comparison of
convergence of both methods also confirms these
conclusions.

When the number of unknowns over the field of complex
numbers is large, the convergence of each method can be
checked using the complex analog of the Hurwitz stability
criterion, or using the classical Rouse-Hurwitz criterion in the
real case.

CONCLUSION
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CpaBHUTEIbHBIN aHAJIN3 UTEPALMOHHBIX
MeToJI0B SAko0u u ["aycca-3enaens

I1. B. Xpamog, H. C. Bonkos

Annomayua — B padoTe OaH CPaBHUTEJIbHBIH aHAJIN3
UTEPALMOHHBIX YHCIEeHHBIX MeToA0B SIkoou u "aycca-3eiinens
pellleHUs] CHCTeM JIMHEHHBIX aaredpanyecKux YpaBHeHUM
(CJIAY) ¢ KOMILUIEKCHBIMU M JefiCTBUTEIbHBIMH MATPHIIAMH.
[HoayuyeHbl 00JIaCTH CXOAMMOCTH UIsI 000MX MeTOAOB [JIsl
CJIAY ¢ aByMsl H TpeMsl HEH3BECTHBIMH, 2 TAKKe B3aMMOCBS3HU
JaHHbIX oOaacreii. IlocTtpoen anropuTm omnpeneseHus
cxoaumocTu MetoaoB st CJIAY ¢ noMompbi0 KOMILIEKCHOTO
anajora kpurepusi ['ypBuua, paaHa peanu3auust 3TOro
aaroputMa Ha s3pike Python B cayuae CJIAY c¢ Tpemst
HeusBecTHbIMH. IIpoBeaeHo cTraTHCTHYecKOe CcpaBHeHHUe
cxonumoct o6oux MeroaoB s CJIAY ¢ BemecTBeHHOMH
MaTpHIiell  KOJIM4eCTBOM HEH3BECTHBIX OT JABYX /IO MATH.

Kniouesvie cnoga — WTEPAMOHHBIE MeETOIbI, CHCTEMA
JIMHEeHHBIX ajrefpanvecKUx ypaBHeHHUi, Merol SIkodu, meroxn
I'aycca-3eiigens, ycroiuMBbIe MHOIOWIEHbI, KpHTEpPUi
I'ypsuna.
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