
International Journal of Open Information Technologies ISSN: 2307-8162 vol. 12, no. 2, 2024

An Investigation into Router Firmware Security and
the Embedded Device Challenge
P. Raghu Vamsi, Stuti Sharma, Aarushee Krishna, and Devika Gupta

Abstract—In the present IoT world the need for robust network
security is more important than ever as the internet-connected
gadgets are everywhere and our dependence on networked
systems is increasing. Ensuring the safe transfer of data and
protecting the connected devices, primarily through routers that
serve as gateways to the internet, has become a critical priority.
The security of router firmware is of paramount importance
because any weaknesses in these vital components could lead to
extensive network breaches and data compromises. Due to the
growing prominence of embedded devices and many of which
are surprisingly lacking in robust security measures, making
them attractive targets for potential attacks. Among them, routers
which function as bridges connecting local and global networks
have become prime targets for Cyber attacks. To this end, this
paper focuses on analyzing the firmware of TP-Link Archer
AX55 AX3000 dual band Gigabit Wi-Fi 6 Router crafted by TP-
Link technologies. The objective is to conduct a through security
analysis to fortify the security of router firmware and then
providing countermeasures for strengthening the safety and
resilience of the Internet’s infrastructure. The insights and
recommendations resulting from this work stand to benefit router
manufacturers, network administrators, and end-users in their
ongoing efforts to combat ever-evolving Cyber threats.

Keywords—Cyber security, Embedded devices, IoT, Network

security, Router firmware, TP-Link Archer AX55 Router.

I. INTRODUCTION

In today’s highly interconnected world, routers serve as the
backbone of our digital infrastructure, facilitating the seamless
exchange of data that links businesses and individuals across
the globe. Given their critical role, it is imperative that routers
are equipped with robust security measures, as they are prime
targets for online threats. The repercussions of router security
vulnerabilities are profound, ranging from data breaches to
corporate espionage and network intrusions. At the heart of
these devices, router firmware plays a pivotal role in ensuring
their proper functioning and security. It acts as both the
brains and the heart, orchestrating operations and safeguarding
against potential dangers. Consequently, scrutinizing router
firmware is a fundamental task for security researchers as
it enables the identification and evaluation of vulnerabilities.
By doing so, they significantly enhance the overall security
of these devices assuring the reliability and safety of our
digital networks. Nevertheless, conducting security assessment
of router firmware comes with its share of challenges. This

environment is marked by complexity, vendor-specific
methods, and a lack of standardized firmware images, making
it a formidable task to assess and bolster the security of
these vital devices, particularly due to their vendor-specific
nature. Adding to the complexity is the restricted access to
firmware source code, a rarity among vendors. Firmware
binary distribution packages, typically provided in binary
image form, are occasionally encrypted and obfuscated even
when access is granted. While these security measures aim to
thwart reverse engineering and exploitation attempts, they may
not fully ad- dress zero-day vulnerabilities or known CVEs in
the software components, introducing an added layer of
complexity. The understanding of how firmware can be
manipulated to execute unauthorized activities, potentially
jeopardizing the security of the entire ecosystem, is of
paramount importance [1], [2].

Routers serve as the linchpin of digital infrastructure by
regulating the flow of data and communication between de-
vices and the internet. However, the software that powers
these critical devices, known as router firmware, grapples
with variety of security challenges and vulnerabilities that
demand rigorous analysis and mitigation [3]. This study aims
to undertake a comprehensive security analysis of router
firmware to identify vulnerabilities, assess potential threats,
and propose effective mitigation strategies. This work presents
analysis of firmware code base, protocol implementations, and
configuration management to uncover weaknesses and
potential entry points for attackers. Open Web Application
Security Project (OWASP) methodology is followed to
systematically address the complex issues and vulnerabilities.
Also, this approach is chosen because it will facilitate the
identification of vulnerabilities, the evaluation of potential
risks, and the formulation of mitigation strategies.

To this end, the primary objectives of this work encompass
vulnerability assessment, threat modeling, penetration testing,
and recommending mitigation Strategies. In the rest of the
paper after discussing the background literature in Section II,
we present the methodology of the proposed study such as
systematic identification, assessment, and re-mediate
vulnerabilities within router firmware, thus safeguarding the
integrity, confidentiality, and availability of network data in
Section III. Section IV presents the observations followed by
conclusion in Section V.

67

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 12, no. 2, 2024

II. BACKGROUND

Software vulnerabilities have been on a steady increase each
year, with a rise in both the total number of vulnerabilities
discovered and the speed at which they are identified. For
instance, in 2010, the Common Vulnerabilities and Exposures
(CVE) database received approximately 4,600 new
vulnerability reports. This number grew to 6,500 in 2016 and
skyrocketed to over 14,700 reports in 2017. It’s common
practice for clients and companies to rely on commercial off-
the-shelf binaries for their products and operations. These
external products often undergo a rigorous process, including
software security validation, such as black-box penetration
testing. In the context of mobile and Internet of Things (IoT)
vendors, open source code is often re-purposed by penetration
testers and tailored to their specific devices [4], [5].

The firmware, possessing significant authority, plays a
pivotal role in bridging upper-level applications and
underlying hardware components. If vulnerabilities within
embedded sys- tem firmware code are not promptly addressed
and controlled, potential attackers can exploit these
weaknesses, resulting in disruptive actions such as denial of
service or even the self- destruction of embedded devices.
This can lead to widespread equipment paralysis, substantial
economic losses, and severe security crises. The earlier
vulnerabilities are detected, the more effectively the security
of embedded devices can be bolstered [6], [7].

Some of the testing methods mentioned in the literature
include [6], [8]–[12]:

1) Fuzzy Testing: This technique involves injecting a large
volume of semi-valid data into the application to uncover
defects.

2) Behavioral Analysis: It assesses code behavior and
analyzes code results to identify potential malicious
behavior or vulnerabilities.

3) Homology Analysis: This method considers the
possibility that different brands of devices may run
similar firmware and share common third-party
libraries, potentially leading to vulnerabilities. For
instance, the study found that in the case of D-Link
routers, 63.15% of them, including the D-Link DIR-645
router, had common vulnerabilities that could impact the
entire D- Link router family.

Costin et al. [3] delved into automated dynamic firmware
analysis at scale with a focus on embedded web interfaces.
Authors explored the challenges and complexities of firmware
analysis and present their research on identifying vulner-
abilities within embedded systems. They provided insights
into the methods and tools used for such analysis and share
their findings on vulnerabilities detected in embedded web
interfaces. Hemram et al. [12] discussed the critical issue
of firmware vulnerability detection in embedded systems and
the Internet of Things (IoT). Authors proposed methods for
identifying vulnerabilities within firmware. Hou et al. [11]
addressed the topic of vulnerability detection in embedded
system firmware. This work highlighted the significance of

Fig. 1: Methodology of the proposed study

identifying and mitigating vulnerabilities within embedded
systems. Brezolin et al. [2] presented a novel approach to
vulnerability detection using IoT network traffic analytics.
Nadir et al. [6] introduced a comprehensive taxonomy of IoT
firmware security and principal firmware analysis techniques.

III. METHODOLOGY

The current study is primarily focused on conducting a

comprehensive assessment of router firmware. This
comprehensive examination involves a multi-step process that
encompasses reverse engineering the binary image to gain
insights into its functionality, detecting vulnerabilities such as
buffer overflows and injection attacks, proposing effective
countermeasures to bolster security, unveiling concealed
features, and meticulously documenting all findings in
comprehensive reports. The overarching objective of this work
is to make a significant contribution to the safety and
dependability of router firmware thereby fortifying protection
against potential security threats. To facilitate this analysis,
current study leverages the well- established framework
provided by the Open Web Application
Security Project (OWASP). OWASP delivers a comprehensive
methodology that encompasses a suite of community tools and
techniques tailored for firmware analysis during penetration
testing. The Firmware Security Testing Methodology (FSTM),
consisting of nine distinct steps as shown in Figure 1. Each of
these steps serves as a guidance tool for analysts in the process
of identifying and confirming vulnerabilities. The description
of nine steps outlined in the OWASP methodology are as
follows [6], [8], [10]:

1) Information gathering and reconnaissance: This is a
critical initial phase which involves collecting relevant
information about the firmware.

2) Obtaining firmware: The step entails procuring or ob-
taining the firmware to move forward with the analysis.

3) Analyzing firmware: This phase is pivotal as it involves
dissecting the firmware to understand its inner workings.

4) Extracting the filesystem: By extracting the filesystem,
we gain access to the core contents of the firmware,
allowing for deeper inspection.

68

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 12, no. 2, 2024

Fig. 2: Software configurations of Archer AX-55

Fig. 3: Hardware and security configurations of Archer AX-55

5) Analyzing the filesystem contents: The analysis con-
tinues by scrutinizing the contents of the filesystem in
detail.

6) Observations and countermeasures: The final stage in-
volves drawing observations from the analysis and
proposing countermeasures to enhance security.

These steps provide a comprehensive structure for the cur-
rent work and facilitate a systematic approach to firmware
security analysis in the context of router firmware. This study
focuses on analyzing the firmware of TP-Link Archer AX55
AX3000 Dual Band Gigabit Wi-Fi 6 Router crafted by TP-
Link Technologies. Software and hardware configurations of
the considered router are provided in the Figure 2 and 3
respectively. The following subsections describes these steps
in detail.

To follow the methodology of firmware reverse engineering
various tools are utilized. We have performed the experiments
on Kali Linux operating system [13]. It is a renowned pene-
tration testing and ethical hacking platform. It provides a ro-
bust environment for conducting various security assessments
and analysis tasks. This operating system installed in virtual
environment in Oracle Virtual Box. We use the tools such
as 1) Binwalk [14]: this tool stands as a fundamental tool
in our arsenal, crucial for the identification and extraction of
file system components within firmware. It plays a key role
in deciphering the internal structure of firmware binaries. 2)
Firmwalker [15]: It is an automation tool we leverage for the
examination of filesystem contents and uncompiled code. It
aids in the detection of vital clues, such as keywords, URLs,
and email addresses, within the firmware. 3) Binvis.io [16]:

Fig. 4: Shodan reports for TP-Link

Fig. 5: Known vulnerabilities for TP-Link Archer AX Family

This is another valuable resource that we utilize to gener-
ate critical visual representations of firmware data. It offers
insights through images such as entropy, detail, byte class,
and magnitude images, contributing to a more comprehensive
understanding of the data. Other supporting tools such as
hashdump is utilized to observe the hashes.

A. Information gathering and reconnaissance
In this step, we gathered all pertinent technical and docu-

mentation details related to the firmware of the target devices.
To accomplish this, we utilized the Shodan search engine.
Figure 4 illustrates the process of information collection
through the Shodan search engine. Our specific focus here
is on reports related to TP-Link router to obtain technical
parameters about these devices. After successful gathering of
information, the next step is to conduct a systematic search
for known vulnerabilities within the framework of a Threat
Signal report, as depicted in Figure 5. This search enables us

Fig. 6: Command injection attacks on number of devices vs.
date

69

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 12, no. 2, 2024

to identify potential vulnerabilities in TP-Link Archer AX21
routers. Notably, our findings reveal a heightened
susceptibility of TP-Link Archer AX21 routers to command
injection vulnerabilities. Furthermore, the collected
information also sheds light on the historical context of
command injection attacks on these routers effectively
highlighting the evolving threat landscape in Figure 6. It is
observed that TP-Link Archer AX21 is more prone to
command injections and the information obtained regarding
command injection attacks on the router across various dates.

B. Obtaining firmware
To obtain the necessary firmware, we have established

a direct channel for acquisition from the vendor. We
obtained the firmware from the TP-Link vendor’s official
website (https://www.tp-link.com/in/home-networking/wifi-
router/archer-ax55/). With this link we have accessed the most
reliable and up-to-date firmware version originating from the
trusted vendor’s platform. By obtaining the firmware directly
from the vendor’s designated source, we ensure the integrity
and authenticity of the software, setting a solid foundation
for our subsequent security analysis and testing procedures.

C. Analyzing firmware
In this phase, a multi-step process is followed to thoroughly

examine the firmware and to gain deeper insights into its
composition and functionality. The steps followed are as
follows

• Step 1: we employed the command-line tool known as
"binwalk". This versatile tool scans binary files and in-
strumental in detecting concealed or encoded data within
the firmware. Furthermore, it aids in extracting infor-
mation related to the firmware’s filesystem. Binwalk’s
functionality allows us to uncover hidden elements within
the firmware. Based on our analysis using the binwalk
tool, we have determined several key characteristics of
the Archer firmware. It is ascertained that the Archer
firmware employs the squashfs filesystem which is a
file compression system frequently used in embedded
devices. Additionally, our analysis revealed that the
firmware utilizes the little-endian byte order data format
used in computing. Figure 7 presents the binwalking the
firmware file.

• Step 2: This step is pivotal in our examination of
the firmware. We utilized the "hexdump" command, as
demonstrated below:
$ hexdump -C <bin file name> > hexdump.out
It entails byte by byte examination of the firmware’s
binary content. The output of this examination is stored
in an output file named "hexdump.out". This command
allows us to inspect and display the contents of bi-
nary files, offering various formats such as hexadecimal,
decimal, octal, or ASCII representations. It enables a
comprehensive understanding of the firmware’s binary
data. Figure 8 presents the use of hexdump on firmware
file.

Fig. 7: Binwalking the firmware file

Fig. 8: Analyzing firmware with hexdump

• Step 3: The next step involves the utilization of the
"fdisk" command in combination with the "-lu" flag,
applied as follows:
$ fdisk -lu <bin>
This command is essential for listing the partitions and
filesystems of the firmware. It provides an overview of
the firmware’s drive structure to comprehend how the
firmware is organized and structured. The "fdisk" com-
mand has played a crucial role in our analysis. Beyond
its fundamental role in specifying the type of filesystem
used on each partition, "fdisk" also facilitates the creation
and removal of partitions, as well as the allocation of
partition sizes. This command provides essential insights
into the organization of the firmware, and it has been
an invaluable asset in our exploration of the firmware’s
structure and layout.

Figure 9 presents a set of images that were acquired through
the binvis.io platform. These images include entropy image,
detail image, byte class image, and magnitude image. Entropy
(Figure 9(a)) is a measure of randomness or disorder within
data. Entropy image reveals areas within the firmware where
data is highly random or exhibits unusual patterns. High
entropy regions may suggest the presence of encryption or
compressed data. The detail image (Figure 9(b)) provides a
visual representation of specific patterns or structures within
the firmware binary. This can help analyzing sections of
interest, potential vulnerabilities, or unexpected data
configurations. Byte class image (Figure 9(c)) helps
categorizing data within the firmware into different classes
based on their

70

http://www.tp-link.com/in/home-networking/wifi-

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 12, no. 2, 2024

Fig. 10: Extracting password files from firmware

(a) (b) (c) (d)

Fig. 9: Images obtained from binvis.io (a) Entropy (b) Details
(c) Byte class (d) Magnitude

characteristics. Byte class analysis can assist in identifying
code, data, or other components within the firmware, aiding in
its understanding. Magnitude image (Figure 9(d)) highlight the
significance of certain features within the binary. It can help
pinpoint sections that are particularly important for analysis
or that may require further scrutiny.

D. Extracting the filesystem
This phase is an important phase in the entire anlysis as it

requires a combination of automated and manual techniques
for a thorough review of the firmware’s filesystem contents.
Automated extraction is facilitated through the "binwalk -
ev <bin>" command. This command automatically extracts
contents in the designated format " binaryfile/filesystem/,"
simplifying the process and providing immediate access to
known file types. In cases where the magic byte of the
filesystem is not present in binwalk’s signatures then the
manual extraction is initiated. The following steps guide this
manual extraction process:

• Use the "dd" command, as shown below, to extract the
Squashfs filesystem contents and create a file named
"dir.squashfs":
$ dd if=Firmware.bin bs=1 skip=10667554
of=dir.squashfs

• The next step involves utilizing the command "unsquashfs
dir.squashfs" to decompress, extract, and list the contents
of the Squashfs filesystem. This approach allows for a
comprehensive review of the firmware’s filesystem con-
tents. The automated extraction process, with "binwalk -
ev," efficiently handles known file types, generating a new
folder for each with the " fileName.extracted" naming
convention. In cases where the magic byte is not detected,
the manual method involves using binwalk to identify
the filesystem’s offset within the binary, followed by the
extraction of the compressed filesystem. Subsequently,
the filesystem is manually decompressed and extracted

based on its type. This combined approach ensures that all
filesystem contents are accurately extracted and available
for in-depth examination and analysis, a critical aspect of
our research.

E. Analyzing the filesystem contents
In this phase we delve into the examination of filesystem

contents aiming to gather essential clues for dynamic and run-
time analysis. This multifaceted analysis encompasses both
statically reviewing uncompiled code and investigating the
filesystem’s components. These are all facilitated through the
utilization of automation tools like "firmwalker". This step
commences with the deployment of automation tools. The
"firmwalker tool is employed to parse shadow files, pass-
word files, SSL-related files, configuration files, script files,
and much more within the filesystem. To execute this, the
following command is utilized:

$./firmwalker.sh /home/Desktop/Archer Router Firmware/
firmware.bin.extracted/squashfs-root/

This command helps extraction of crucial insights, such
as identifying URLs, email addresses, IP addresses, and the
detection of significant keywords, including but not limited
to ’admin,’ ’password,’ ’remote,’ ’API keys,’ and numerous
others. Figure 10 shows the extraction of password files. Figure
11 (a) to (p) respectively shows searching for (a) SSL related
files, (b) configuration files, (c) other binary files, (d) admin
files, (e) root files, (f) password files, (g) dropbear files, (h)
ssl files, (i) private keys, (j) telnet details, (k) secret keys, (l)
pgp files, (m) gpg files, (n) tokens, (o) api keys. By statically
reviewing uncompiled code and filesystem components with
the aid of automation tools, we obtain valuable information
that lays the foundation for dynamic and run-time analysis.
This meticulous approach empowers us to detect potential
vulnerabilities, uncover hidden configurations, and pinpoint
areas of interest that might require further investigation.

F. Observations and countermeasures
With the study made about the router firmware, the follow-

ing observations are made and countermeasures are suggested.
1) Observations:
1) Firmware Analysis Complexity: The firmware analysis

process is to be multifaceted comprising automated and
manual steps. This complexity underscores the need
for a structured approach that combines both methods,

71

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 12, no. 2, 2024

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Fig. 11: Snapshot of results obtained from firmwalker tool to search for (a) SSL related files, (b) configuration files, (c) other
binary files, (d) admin files, (e) root files, (f) password files, (g) dropbear files, (h) ssl files, (i) private keys, (j) telnet details,
(k) secret keys, (l) pgp files, (m) gpg files, (n) tokens, (o) api keys

72

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 12, no. 2, 2024

ensuring that all file system contents are accurately
extracted and available for examination.

2) Filesystem Clues: The utilization of automation tools
like "firmwalker" enables the parsing of critical files
such as shadow files, password files, SSL-related files,
and configuration files (Figure 11). This reveals valuable
clues that can be pivotal for dynamic and runtime
analysis.

3) Keyword Detection: The ability to detect keywords,

including ’admin,’ ’password,’ ’remote,’ and ’API keys,’
among others, within the filesystem is instrumental in
identifying potential vulnerabilities and security weak-
nesses.

2) Countermeasures:
1) Structured Approach: Employing a well-defined

structured methodology for firmware analysis is
essential. Combining automated tools with manual
techniques ensures a comprehensive review of the
firmware, minimizing the risk of overlooking critical
components.

2) Regular Updates and Patch Management: To address
vulnerabilities and enhance firmware security, regular
updates and patch management practices should be
implemented. This ensures that known vulnerabilities
are addressed promptly.

3) Access Control: Restricting access to sensitive files and
configuration information within the firmware can
mitigate the risk of unauthorized access and data
exposure. Implementing stringent access controls can
bolster security.

4) Code Review: Statically analyzing uncompiled code is
crucial. This can be complemented by regular code
reviews to identify and address security issues and
vulnerabilities at the source code level.

5) Keyword Blacklisting: Implementing keyword
blacklisting mechanisms can enhance security. When
sensitive keywords are detected within the firmware
then automatic alerts or actions can be triggered to
prevent unauthorized access or modifications.

6) User Education: Educating users and administrators about
best practices for firmware management and security is
essential. This includes strong password policies and the
importance of keeping firmware up to date.

IV. CONCLUSION

In this paper, we have undertaken a comprehensive
exploration of firmware analysis and security assessment of
embedded devices. The process involves an intricate series
of steps ranging from firmware acquisition to detailed ex-
amination of firmware components. We have employed a
range of tools and technologies to facilitate our analysis
and enhance its efficiency. The observations made throughout
this work have revealed that the significance of a structured
approach to firmware analysis was required. It is observed that
automation tool such as "firmwalker" played a crucial role

of in parsing critical files and identifying keywords, email
addresses, and URLs within the firmware. In this analysis,
several key observations have emerged that shed light on the
multifaceted nature of this process. Such a method ensures that
all file system contents are accurately extracted, and this
comprehensive examination is pivotal in uncovering potential
vulnerabilities. It is observed that the considered TP-Link Archer
AX55 AX3000 router firmware have several security flaws
which ultimately leaking sensitive information related to
keyword. The study recommends regular updates, access control,
code review, keywords blacklisting, and user education as
countermeasures while using this router. In the future work, we
attempt to further verify the detected vulnerabilities using
automated pen-testing frameworks like Metasploit and Cobalt
Strike. Moreover, we aim to enhance our methodology by
exploring multiple alternatives for extraction and analysis.

REFERENCES

[1] F. Bolandi, “Automated security analysis of firmware,” 2022.
[2] U. Brezolin, A. Verg ütz, and M. Nogueira, “A method for vulnerability

detection by iot network traffic analytics,” Ad Hoc Networks, vol. 149,
p. 103247, 2023.

[3] A. Costin, A. Zarras, and A. Francillon, “Automated dynamic firmware
analysis at scale: A case study on embedded web interfaces,” in
Proceedings of the 11th ACM on Asia Conference on Computer and
Communications Security, 2016, pp. 437–448.

[4] U. Ravindran and R. V. Potukuchi, “A review on web application
vulnerability assessment and penetration testing,” Review of Computer
Engineering Studies, vol. 9, no. 1, 2022.

[5] P. R. Vamsi and A. Jain, “Practical security testing of electronic com-
merce web applications,” International Journal of Advanced Networking
and Applications, vol. 13, no. 1, pp. 4861–4873, 2021.

[6] I. Nadir, H. Mahmood, and G. Asadullah, “A taxonomy of iot firmware
security and principal firmware analysis techniques,” International Jour-
nal of Critical Infrastructure Protection, p. 100552, 2022.

[7] M. Ibrahim, A. Continella, and A. Bianchi, “Aot-attack on things: A
security analysis of iot firmware updates,” in 2023 IEEE 8th European
Symposium on Security and Privacy (EuroS&P), 2023.

[8] P. Sun, L. Garcia, G. Salles-Loustau, and S. Zonouz, “Hybrid firmware
analysis for known mobile and iot security vulnerabilities,” in 2020 50th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN). IEEE, 2020, pp. 373–384.

[9] J. Selsøyvold and I. H. Trosdahl, “A security assessment of an embedded
iot device,” B.S. thesis, NTNU, 2022.

[10] A. Qasem, P. Shirani, M. Debbabi, L. Wang, B. Lebel, and B. L. Agba,
“Automatic vulnerability detection in embedded devices and firmware:
Survey and layered taxonomies,” ACM Computing Surveys (CSUR),
vol. 54, no. 2, pp. 1–42, 2021.

[11] J.-b. Hou, T. Li, and C. Chang, “Research for vulnerability detection of
embedded system firmware,” Procedia Computer Science, vol. 107, pp.
814–818, 2017.

[12] S. Hemram, G. J. W. Kathrine, G. M. Palmer, and S. V. Ewards,
“Firmware vulnerability detection in embedded systems and internet of
things,” in 2022 International Conference on Augmented Intelligence
and Sustainable Systems (ICAISS). IEEE, 2022, pp. 1161–1167.

[13] S.. Kali Linux. (2023, “Penetration testing and ethical hacking linux
distribution.” [Online]. Available: https://www.kali.org/

[14] ReFirmLabs, “Refirmlabs/binwalk: Firmware analysis tool,”
GitHub, binwalk Repository. [Online]. Available:
https://github.com/ReFirmLabs/binwalk

[15] F. Repository, “Firmwalker repository analysis tool,” GitHub, firmwalker
Repository. [Online]. Available: https://github.com/craigz28/firmwalker

[16] “binvis/binvis.io: The binvis.io site,” GitHub (2023, September 28).
[Online]. Available: https://github.com/binvis/binvis.io

P. Raghu Vamsi - Department of Computer Science Engineering and

IT, Jaypee Institute of Information Technology, A-10, Sector
62, Noida, India – 201309 (email: prvonline@yahoo.co.in)

Stuti Sharma - Department of Computer Science Engineering and IT,
Jaypee Institute of Information Technology, A-10, Sector 62,
Noida, India – 201309 (email: stutisharma2703@gmail.com) 73

http://www.kali.org/
http://www.kali.org/

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 12, no. 2, 2024

Aarushee Krishna - Department of Computer Science Engineering
and IT, Jaypee Institute of Information Technology, A-10,
Sector 62, Noida, India – 201309 (email:
aarusheekrishna@gmail.com)

Devika Gupta - Department of Computer Science Engineering and

IT, Jaypee Institute of Information Technology, A-10, Sector
62, Noida, India – 201309 (email: devikagupta62@gmail.com)

74

