
International Journal of Open Information Technologies ISSN: 2307-8162 vol. 2, no. 11, 2014

 34

Abstract—In this paper, we would like to discuss software

standards in the connection with the development of emerging

telecom applications. Emerging (military) telecom applications

present one of the biggest challenges for the developers (design

and development) and telecom providers (deployment and

maintenance). It is especially true in the context of transition

from TDM to IP networks. This transition may bring own

challenges associated with the priorities in data transmission,

security, etc. We describe two biggest telecom related examples

(GIG and FI-WARE), discuss the challenges and propose

directions for software standards development and deployment.

Keywords— circuit switch; packet switch; communications;

software standards; micro-service; middleware.

I. INTRODUCTION

In this paper, we would like to discuss the software

standards in the connections to the development of emerging

telecommunication services.

We want to dwell on the importance of the opinions and

the emerging trends in the development during the creation

of new standards. We are talking about the standards that

affect software development. By our opinion, the very

important point here is an adaptation (adoption) of standards

by the existing development community ensures their wide

distribution and use [1]. Otherwise (which is not

uncommon), we are faced with a situation where standards

exist in parallel and independently of the established

practice. In recent history, we can recall examples of real

opposition to the proposed standard from the existed

approaches and practices. For example, we can point out

here the confrontation of TCP/IP protocol stack and the ISO,

Corba and Web services, IIOP and XML, and on the same

Web Services versus REST, XML versus JSON, etc [2].

In the telecommunications world, the most interesting

example is, of course, the whole story behind the Parlay. We

saw a whole family of APIs: Parlay/OSA, Parlay X, which

can be described as a simplified version of Parlay/OSA, then

JAIN. This constant redesigning and repositioning of

standards leads to a loss of meaning as to that constitutes a

standard [3]. Parlay is also a great example of

incompatibility for standards implementation.

We can use many parameters describing the software

Manuscript received October 3, 2014.

M. Sneps-Sneppe is with Ventspils University College, Ventspils

International Radioastronomy Centre, Ventspils, Latvia. e-mail:

manfreds.sneps@gmail.com

D. Namiot is with Lomonosov Moscow State University, Faculty of

Computational Mathematics and Cybernetics, Moscow, Russia. e-mail:

dnamiot@gmail.com

standards. But from our point of view, the main

(determining) parameter is the answer to the main question

of interest to developers. This question is the time it takes to

build services (applications) using a novel approach. Time is

a key factor in software development. Can we save a time

with new approach? The biggest problem with above-

mentioned Parlay was the conclusion about time-to-market

for new development with this approach. Actually, this

standard increased the time for development (time to market

for new services).

By our opinion, the key point for any software

development tool is the simplicity and finally, time to market

for new applications. Note, that telecom projects could be

heavy affected by standard problems due to high diversity in

the devices and use case models. Not taking into account

the interests of developers to create standards, we risk facing

a parallel existence of the standard model and the actually

utilized the existing approaches.

In the connection with software standards we discuss the

biggest telecom-related software projects: Global

Information Grid (in Section II) and Future Internet FI-

WARE (in Section III). Both are too sophisticated to be

successful to follow unique standards, of course, from our

particular viewpoint. As a compromise we offer micro-

service approach (in Section IV).

II. MODELING THE GLOBAL INFORMATION GRID

The movement from circuit switching to packet switching

is one of the biggest tasks for telecom companies over the

world (Figure 1). The packet switching equipment

manufacturers are the main engine behind this movement.

And they are the first promoters of this change of the

paradigm of the telecommunications industry.

Fig. 1. TDM to IP.

In the paper, we consider the difficulties of the transition

from circuit-switched to packet switched communication

networks on the example of the Ministry of Defense of the

United States - the world's largest private network. We hope

that the experience of such a large project could help

domestic operators who took the orientation to "All-over-

Micro-service Architecture for Emerging

Telecom Applications

Manfred Sneps-Sneppe, Dmitry Namiot

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 2, no. 11, 2014

 35

IP". In 2008, significant effort began on Global Information

Grid (GIG), led by Vice Admiral Nancy Brown, Joint Staff,

Director for C4 Systems [4].

The key goal is to reduce barriers to information sharing.

Adm. Brown pointed out that there are too many networks

and GIG 2.0 should be a framework to bring together service

intranets to act as one global network (Figure 2).

Fig. 2. GIG 2.0 framework

GIG 2.0 has five characteristics that the admiral outlined

in her presentation: global authentication, access control and

directory services; unity of command; information and

services "from the edge"; joint infrastructure; and common

policies and standards. The tactical edge is in the center of

the framework because GIG 2.0 is being developed to

provide capability to the troops on the ground. Fig. 2. GIG

2.0 is a framework to bring together many networks to act

as one global network Figure 3 illustrates the co-operation

tasks between different forces [5].

The DISA (Defense Information Systems Agency)

systems engineering process shown in Figure 4 was

developed to ensure DISA services and applications. These

solutions will be developed using a Model based Systems

Engineering (MBSE) methodology in conjunction with the

standards-based Systems Modeling Language (SysML),

which focuses on the underlying data in the models.

Fig. 3. Co-operation tasks

International Council on Systems Engineering (INCOSE)

defined the Unified Modeling Language (UML) for Systems

Engineering strategy in January 2001. INCOSE partnered

with the Object Management Group (OMG) published

Systems Modeling Language (SysML) specification in June

2006 [6].

Figure 4 depicts the DISA MBSE process, where the

system architecting process maps to the SysML diagrams

that comprise the model. Models provide precise

descriptions of how systems work and include well defined

interfaces, which make it possible to combine existing

models into end-to-end services; the models that make up

these end-to-end services can then be used as patterns to

develop new services.

SysML provides 9 different types of diagrams to represent

the architecture, which can be used to develop solutions: 4

behavioral, 4 Structural and one Cross-Cutting diagram.

These 9 SysML diagram types map directly to DoD

Architecture Framework [7] (DoDAF) models, totally 26

DoDAF models. 26 DoDAF matrix artifacts are reports that

can be generated directly from SysML models.

The comparison of enterprise frameworks (EAF) is

presented in [8]. Authors provide a methodology for the

comparison. They chose several aspects of EAF. The

planner view includes the concepts for the final product. It

may encompass items such as the relative size, shape, and

basic intent of the final structure. The owner view is that of

the owner which may represent an architect’s drawings in

which the owner agrees that the architect has captured what

he has in mind. The designer view is the architect’s final

product. The builder view represents the view in which the

architect’s final plans are modified to reflect how

construction will proceed. The subcontractor view represents

drawings of parts or subsections of the plans. The product

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 2, no. 11, 2014

 36

view represents the final product, building, or project. In

their study they have mentioned, for example, the lack of

maintenance phase support in DoDAF. On the

implementation phase DoDAF just describes the final

product. There are no implementation tools.

Fig. 4. DISA Model

Thus, this is an extremely complex design, which will

require the work of many thousands of programmers and is

unlikely to be brought to an end, as there are new tasks, such

as problem of cyberwar, which have already led to a revision

of GIG: GIG 3.0. These considerations were the basis for

treatment Micro-service architecture discussed below.

III FI-WARE PROJECT

Military applications are similar to M2M communications

or, from the wider viewpoint, similar to Internet of Things.

The most interesting in the area of Future Internet, from the

developer’s point of view, is FI-WARE project [9]. FI-

WARE will deliver a novel service infrastructure, building

upon elements (called Generic Enablers) which offer

reusable and commonly shared functions, making it easier to

develop Future Internet Applications in multiple sectors –

building a true foundation for the Future Internet.

The project will develop public and royalty-free Open

Specifications of Generic Enablers, together with a reference

implementation of them available for testing. This way, it is

aimed to develop working specifications that influence

Future Internet standards. FI-WARE is the cornerstone of

the Future Internet Public Private Partnership (PPP)

Program, a joint action by the European Industry and the

European Commission.

The FI-PPP follows an industry-driven, user-oriented

approach that combines R&D on network and

communication technologies, devices, software, service and

media technologies; and their experimentation and

validation in real application contexts. The platform

technologies will be used and validated by many actors, in

particular by small- and medium-sized companies and public

administrations. FI-WARE architecture is shown in Figure 5.

There are more than 60 FI-WARE Generic Enablers (GE)

as common building blocks across Use Case projects, and

more than 100 Specific Enablers as dedicated building

blocks coming from the Use Case projects so as to support

their proof of concept and build prototypes. Each enabler

presents a set of components and some unified API

(Application Program Interface). The specifications for

enablers are open.

Fig. 5. FI_WARE project

As per official document, FI-WARE will enable smarter,

more customized/personalized and context-aware

applications and services by the means of a set of assets able

to gather, exchange, process and analyze massive data in a

fast and efficient way [10]. In general, FI-WARE contains

the following chapters:

cloud hosting,

application/service delivery framework,

data/context management,

Internet of Things enablement,

interfaces to network devices, and

security.

It is mentioned for example, that the Apps Generic

Enablers supports (should support) managing services in a

business framework across the whole service life cycle from

creation and composition of services to monetization and

revenue sharing (see above the remarks about

maintainability in DoDAF).

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 2, no. 11, 2014

 37

Data in FI-WARE refers to information that is produced,

generated, collected or observed that may be relevant for

processing, carrying out further analysis and knowledge

extraction. A basic concept in FI-WARE is that data

elements are not bound to a specific format representation.

FI-WARE proposes also an interesting approach for

Applications/Services Ecosystem and Delivery Framework.

It is based on the heavy usage on USDL [11]. Universal

Service-Semantics Description Language (USDL) can be

used by service developers to specify the formal semantics

of web-services. Thus, if WSDL can be regarded as a

language for formally specifying the syntax of web services,

USDL can be regarded as a language for formally specifying

their semantics. USDL is as formal service documentation

that will allow sophisticated conceptual modeling and

searching of available web-services, automated composition,

and other forms of automated service integration. For

example, the WSDL syntax and USDL semantics of web

services can be published in a directory which applications

can access to automatically discover services.

FI-WARE approach is modular and it is very close to the

micro-services architecture. The whole success for the

platform depends on the above mentioned enablers. E.g. 17

Specific Enablers relate to the OUTSMART project (Smart

City project) but only a few are implemented by now.

The biggest problem, by our opinion, is “all or nothing”

approach with FI-WARE based way. E.g., FI-WARE spec

de-facto sets mandatory data sharing to some cloud

environment. Do we really need it for all imaginable

scenarios? There are many use case for sensors (tags)

inspection from end-user devices (e.g. smartphones or other

personal devices). Mandatory data sharing just adds the

complexity [12-13].

IV THE MICRO-SERVICE ARCHITECTURE

The micro-service approach is a relatively new term in

software architecture patterns. The micro-service

architecture is an approach to developing an application as a

set of small independent services. Each of the services is

running in its own independent process. Services can

communicate with some lightweight mechanisms (usually it

is something around HTTP) [14]. Such services could be

deployed absolutely independently. Also, the centralized

management of these services is a completely separate

service too. It may be written in different programming

languages, use own data models, etc.

An opposite approach is so-called monolithic architecture.

Internally, the monolithic application may have several

services, components, etc. But it is deployed as a united

solution. For its scalability we can run several copies of this

application, but they are identical. What are the advantages?

Unless the application is getting too big, it is easier to

develop. No doubt, it is easier to deploy the monolithic

application. It is, probably, the biggest advantage of the

monolithic solution.

The path for the scalability is also clear. We can run

multiple copies of the application behind a load balancer.

But this approach has got the serious drawbacks too.

The monolithic application could be difficult to

understand and modify. It is especially true, when the

application is growing. With the growing application it is

difficult to add new developers, or replace leaving team

members.

The large code base slows the productivity. Very often we

it will lead to the declined quality of the code. The original

modularity will be eroded. The monolithic application

prevents the developers from working independently. The

whole team must coordinate all development and

redeployments efforts [15].

It makes the continuous development very difficult. The

monolithic application makes the obstacles to the frequent

updates. In order to update some small component, we have

to redeploy the whole application.

 Scaling the application can be actual difficult too. But

there is another reason. A monolithic architecture can only

scale in one dimension. We can increase transaction volume

by running more copies of the application. But on the other

hand, this architecture can not scale with an increasing data

volume. Each our copy of application instance will access all

of the data. It makes caching less effective. Also, this

solution increases memory consumption and input/output

traffic. At the same time, different application components

may have different resource requirements. One might be

CPU intensive while another might be memory intensive.

With a monolithic architecture, we can not scale each

component independently.

The next biggest issue is a technology stack. With the

monolithic architecture, it is very difficult to change it. E.g.,

there is almost no way to change development framework,

etc. It can be difficult to incrementally adopt a newer

technology. And all components within the application will

be sticking to technology being selected at the beginning.

Micro-services architecture gets our attention in the

connection with M2M applications. We declare many times,

that in our opinion “no one size fits all” in M2M

applications. So, we think that the unified (monolithic)

framework for M2M (IoT) is not a realistic solution. By this

reason we think that micro-services are the natural fit for

M2M (IoT) and hence development. As an example, we can

mention our paper [16].

V DISCUSSION ON PROGRAMMING METHODOLOGY

Micro-services architecture may cause some changes in

the used programming paradigms. Let us name some of the

modern approaches in this connection. We think that some

of them could be the true future for telecom programming.

Reactive programming (functional reactive programming -

FRP) [17] is a paradigm for programming hybrid systems

(systems containing a combination of both continuous and

discrete components) in a high-level, declarative way. The

key ideas in FRP are its notions of continuous, time-varying

values, and time-ordered sequences of discrete events. The

most important concept underlying functional reactive

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 2, no. 11, 2014

 38

programming is that of a signal: a continuous, time-varying

value. That is, a value of type Signal is a function mapping

suitable value of time to a value of a given type.

The next interesting concept is Abstract Task Graph [18].

The Abstract Task Graph (ATaG) is a data driven

programming model for end-to-end application development

of networked sensor systems. An ATaG program is a

system-level, architecture-independent specification of the

application functionality. ATaG model maps the network

graph to an application graph.

ATaG provides a methodology for architecture-

independent development of networked sensing applications.

Architecture independence here is the ability to specify

application behavior for a generic and parameterized

network architecture. The same application may be

automatically adopted for the different network

deployments. Application will work as nodes fail or are

added to the system. Furthermore, it allows development of

the application to proceed prior to decisions being made

about the final configuration of the nodes and network.

 As the next model we would like to mention in this

context is the Computational REST [19]. In this model the

traditional content resources are replaced with computational

resources. The key moments behind the Computational

REST are:

- Computations and their expressions are explicitly

named.

- Services may be exposed through a variety of URLs

which offer perspectives on the same computation.

- Interfaces may offer complementary supervisory

functionality such as debugging or management.

- Functions may be added to or removed from the binding

environment over time or their semantics may change.

- Computations may be stateful and stateless.

- Potentially autonomous computations exchange and

maintain state.

- A rich set of stateful relationships exist among a set of

distinct URLs.

- The computation is transparent and can be inspected,

routed, and cached.

- The migration of the computation to be physically closer

to the data store is supported thereby reducing the impact of

network latency.

In this context we should mention also an interesting

model CoReWeb [20]. It presents a web of linked

computational resources.

And at the end, we will describe Flow-Based

Programming (FBR) [21] and the Actor Model [22]. Both

models are based on components where the messages are the

only entities which can affect processes. FBR is actually

very close to the extensions of M2M API proposed in our

paper [19]. Also Actors are very close to the basic

primitives for micro-services.

REFERENCES

[1] Sneps-Sneppe, M., and Namiot, D. (2012, April). About M2M

standards and their possible extensions. In Future Internet

Communications (BCFIC), 2012 2nd Baltic Congress on (pp. 187-

193). IEEE. doi: 10.1109/BCFIC.2012.6218001

[2] Namiot, D., & Sneps-Sneppe, M. (2014, June). On software standards

for smart cities: API or DPI. In ITU Kaleidoscope Academic

Conference: Living in a converged world-Impossible without

standards?, Proceedings of the 2014 (pp. 169-174). IEEE.

[3] Hawkins, R., and Ballon, P. (2007). When standards become business

models: reinterpreting “failure” in the standardization paradigm. Info,

9(5), pp.20-30.

[4] The Global Information Grid (GIG) 2.0 Concept of Operations

Version 1.1//11 March 2009, Joint Staff J6, Washington, D.C.

[5] John Chapin Reengineering the GIG to Support the Warfighter//

IEEE COMSOC, 8 January 2009.

[6] SyncML Initiative. "SyncML Architecture, version 0.2." (2001).

[7] DoD Architecture Framework Working Group et al. DoD architecture

framework version 1.0 //Department of Defense. – 2003.

[8] Urbaczewski, L., & Mrdalj, S. (2006). A comparison of enterprise

architecture frameworks. Issues in Information Systems, 7(2), pp.18-

23.

[9] Tuominen, L. (2013). Future Internet in the European Union-Case FI-

WARE.

[10] Future Internet Public Private Partnership. Outcomes,

achievements, and outlook. Phase 1, Final Report, European

Commission, Sept 2013.

[11] Barros, Alistair, and Daniel Oberle. Handbook of Service

Description: USDL and Its Methods. Springer Publishing Company,

Incorporated, 2012.

[12] Sneps-Sneppe, Manfred, and Dmitry Namiot. "M2M Applications

and Open API: What Could Be Next?." Internet of Things, Smart

Spaces, and Next Generation Networking. Springer Berlin

Heidelberg, 2012. pp. 429-439.

[13] Namiot, Dmitry, and Manfred Sneps-Sneppe. "On M2M Software."

International Journal of Open Information Technologies 2.6 (2014):

29-36.

[14] Uckelmann, Dieter, Mark Harrison, and Florian Michahelles. "An

architectural approach towards the future internet of things."

Architecting the internet of things. Springer Berlin Heidelberg, 2011.

pp.1-24.

[15] Namiot, D., & Sneps-Sneppe, M. (2014). On Micro-services

Architecture. International Journal of Open Information

Technologies, 2(9), 24-27.

[16] Namiot, Dmitry, and Manfred Sneps-Sneppe. "On M2M Software

Platforms." International Journal of Open Information Technologies

2.8 (2014): pp. 29-33

[17] Hudak, P., Courtney, A., Nilsson, H., & Peterson, J. (2003). Arrows,

robots, and functional reactive programming. In Advanced Functional

Programming (pp. 159-187). Springer Berlin Heidelberg.

[18] Bakshi, A., Prasanna, V. K., Reich, J., & Larner, D. (2005, June). The

abstract task graph: a methodology for architecture-independent

programming of networked sensor systems. In Proceedings of the

2005 workshop on End-to-end, sense-and-respond systems,

applications and services (pp. 19-24). USENIX Association.

[19] Erenkrantz, J. R. (2009). Computational REST: A New Model for

Decentralized, Internet-Scale Applications DISSERTATION

(Doctoral dissertation, University of California, Irvine).

[20] Monnin, A., Delaforge, N., & Gandon, F. (2012, June). CoReWeb:

From linked documentary resources to linked computational

resources. In Proceedings of the WWW2012 Conference Workshop

PhiloWeb 2012: “Web and Philosophy, Why and What For”.

[21] Morrison, J. P. (1994). Flow-based programming. In Proc. 1st

International Workshop on Software Engineering for Parallel and

Distributed Systems (pp. 25-29).

[22] Esposito, A., & Loia, V. (2000). Integrating concurrency control and

distributed data into workflow frameworks: an actor model

perspective. In Systems, Man, and Cybernetics, 2000 IEEE

International Conference on (Vol. 3, pp. 2110-2114). IEEE.

