
International Journal of Open Information Technologies ISSN: 2307-8162 vol. 2, no. 9, 2014

 24

Abstract—This paper provides an overview of micro-services

architecture and implementation patterns. It continues our

series of publications about M2M systems, existing and

upcoming system software platforms for M2M applications. A

micro-service is a lightweight and independent service that

performs single functions and collaborates with other similar

services using a well-defined interface. We would like to discuss

the common principles behind this approach, its advantages

and disadvantages as well as its possible usage in M2M

applications.

Keywords—М2М, communications, software standards,

micro-service, middleware.

I. INTRODUCTION

The micro-services approach is a relatively new term in

software architecture patterns. The micro-service

architecture is an approach to developing an application as a

set of small independent services. Each of the services is

running in its own independent process. Services can

communicate with some lightweight mechanisms (usually it

is something around HTTP) [1]. Such services could be

deployed absolutely independently. Also, the centralized

management of these services is a completely separate

service too. It may be written in different programming

languages, use own data models, etc.

An opposite approach is so-called monolithic architecture.

E.g., for Java web application you can think about a single

WAR file. Yes, internally this application may have several

services, components, etc. But it is deployed as a united

solution. Sure, for the scalability you can run several copies

of this application, but they are identical. What are the

advantages?

Unless the application is getting too big, it is easier to

develop. But there are some limitations connected with the

development team we will discuss below.

No doubt, it is easier to deploy. It is the biggest advantage

of the monolithic solution.

The path for the scalability is clear. We can run multiple

copies of the application behind a load balancer. But let us

see the potential problems too.

The monolithic application could be difficult to

understand and modify. It is especially true, when the

application is getting bigger. With the growing application it

is difficult to add new developers, or replace leaving team

members.

Article received Aug 20, 2014.

D.Namiot is senior researcher at Open Information Technologies Lab,

Lomonosov Moscow State University. Email: dnamiot@gmail.com

M. Sneps-Sneppe is with ZNIIS. Email: sneps@mail.ru

The large code base slows the productivity. Very often we

will the declined quality of the code. The original modularity

will be eroded. The monolithic application prevents the

developers from working independently. The whole team

must coordinate all development and redeployments efforts.

It makes the continuous development very difficult. The

monolithic application makes the obstacles to the frequent

updates. In order to update some small component, we have

to redeploy the whole application.

 Scaling the application can be actual difficult too. But

there is another reason. A monolithic architecture can only

scale in one dimension. We can increase transaction volume

by running more copies of the application. But on the other

hand, this architecture can not scale with an increasing data

volume. Each our copy of application instance will access all

of the data. It makes caching less effective. Also, this

solution increases memory consumption and input/output

traffic. At the same time, different application components

may have different resource requirements. One might be

CPU intensive while another might be memory intensive.

With a monolithic architecture, we can not scale each

component independently.

The next biggest issue is a technology stack. With the

monolithic architecture, it is very difficult (read –

impossible) to change it. E.g. there is almost no way to

change development framework, etc. It can be difficult to

incrementally adopt a newer technology. And all

components within the application will be sticking to

technology being selected at the beginning.

Micro-services architecture gets our attention in the

connection with M2M applications. We declare many times,

that in our opinion “no one size fits all” in M2M

applications [2]. We think that the unified (monolithic)

framework for M2M (IoT) is not a realistic solution [3]. By

this reason we think that micro-services are the natural fit for

M2M (IoT) development. As an example, we can mention

our paper [4].

II. ON CHALLENGES FOR MICRO-SERVICES

Of course, the proposed micro-services approach has got

an own set of drawbacks.

In practice, micro-services approach means for the

developers the additional complexity of creating a

distributed system.

Testing is more difficult for distributed systems.

Probably, it is one of the main problems – we must

implement the inter-service communication mechanism.

Also, very often, we will need some form of distributed

transactions.

On Micro-services Architecture

Dmitry Namiot, Manfred Sneps-Sneppe

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 2, no. 9, 2014

 25

Of course, multiple services will require us strong

coordination within the team of developers. Or, what is more

probable, between the teams of developers.

Obviously, the deployment complexity will be increased.

We need to deploy and manage many different service types.

The next problem is also obvious. The micro-services

approach leads to the increased memory consumption. It

simply, due to own address space for the each service.

One of the biggest challenges is deciding how to split

(partition) the system into micro-services. One obvious

approach is to partition services by use case. For example,

the M2M ETSI model is a typical example (Fig. 1):

Figure 1. M2M ETSI [5]

Some of the authors also mentioned partitioning strategy

by the verbs. E.g., service implements the Login sub-system,

Backup sub-system, etc. [6]

Another partitioning approach is to partition the system by

nouns or resources [7]. This kind of service is responsible

for all operations that operate on entities/resources of a

given type. For example, Figure 2 presents FI-WARE data

model:

Figure 2. FI-WARE data model [8]

Ideally, each service should have only a small set of

responsibilities. We should mention in this case the Single

Responsible Principle (SRP) pattern [9]. The SRP defines a

responsibility of the class as a reason to change, and that a

class should only have one reason to change.

Another widely used illustration of various approaches for

partitioning monolith applications is scaling cube [10]

(Figure 3).

Figure 3. The scale cube [11]

Here X-axis scaling is so-called horizontal scaling. We

scale our application by running multiple identical copies of

the application behind a load balancer.

For Z-axis scaling each server runs an identical copy of

the code. But in this approach, each server is responsible for

only a subset of the data. Some proxy (a special component

of the system) is responsible for routing each request to the

appropriate server. For databases, for example, we can use

the primary key as a main source for this routing. It is so-

called sharding [12]. Another widely used example of this

approach is a service division for free/payable users. The

code base for service is the same, but servers may have

different capacities (depends on bill).

Both Z-axis and X-axis scaling improve the application’s

capacity and availability. But in the same time they can

increase the application (and development) complexity too.

So, for dealing with the increased complexity we can follow

to the Y-axis scaling. It is a functional decomposition

exactly. For example, Z-axis scaling splits things that are

similar, where Y-axis scaling splits things that are different.

At the application tier, Y-axis scaling splits a monolithic

application into a set of services. Each service implements a

set of related functionality (sub-set of the application’s

functionality).

III. MICRO-SERVICES AS COMPONENTS

Traditionally, a component is a unit of software that is

independently replaceable and upgradeable [13]. And

libraries are components that are linked with a program.

Usually libraries are called via in-memory functions calls.

Services are out-of-process components. And for

communications developers should use some forms of

remote procedure calls. By this reason, services are

components, rather than libraries. Another reason for this

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 2, no. 9, 2014

 26

conclusion is the deployment. Services (by the definition)

should be independently deployable. Vice versa, for

changing library within the application (e.g., update it to a

new version) we need to redeploy the whole application.

Unfortunately, this does not work in 100% of cases. What

if the interface for some individual service is changed too?

In this case we will need more to efforts in the redeployment

than simply updating a new service. It is one of the

requirements of the micro-service architecture – to minimize

the possible influence in case of interface changes. It is

about proper design for service contracts.

Of course, remote calls are more expensive than in-

process calls. So, developers have to pay more attention to

its development due to high price of changes. But this

physical isolation is the main strength of micro-services

approach. This isolation is a key to scaling. The physical

isolation lest define the key components for scaling (as per

the standard 80/20 rule [14]).

And the discipline required for the developing service

contracts is a yet another strength of this approach. Any

development without the proper boarding between

components sooner or later leads to the un-maintainable

code.

We can mention the following primitives need for micro-

services architecture [15]:

1) Request/Response calls with arbitrary structured data

2) Asynchronous events should be flowing in real-time in

both directions

3) Requests and responses can flow in any direction,

4) Requests and responses and can be arbitrarily nested.

The typical example is a self-registering worker model

5) A message serialization format should be pluggable.

So, developers may use, for example, JSON, XML, etc.

IV. COMMUNICATIONS IN MICRO-SERVICES ARCHITECTURE

In this paragraph, we would like to discuss

communication patterns. Really, as soon as we talk about

distributed systems and remote calls in micro-services

architecture the network part of the system becomes crucial.

We would like to present some patterns and discuss the

related challenges. The first communication pattern is

obvious. Our application can use each service directly

(Figure 4).

Figure 4. Direct calls

It is, no doubts, the most flexible way. Think, for

example, about web server being able to call various

services before rendering the output page for some particular

request. The biggest problem, of course, is the potential

delays for remote calls. So, the next step is almost obvious.

We need to decrease the amount of remote calls. It leads us

to the various forms of cache and to the solutions, similar to

transaction monitors in databases [16], middleware (3-tier)

applications [17], etc. It is illustrated in the Figure 5.

Figure 5. A gateway for micto-services

Note, that this pattern is more traditional for M2M (IoT)

applications, because this gateway can also hide some

limitations for legacy devices, for example (e.g., for service

== device mapping).

And the third pattern is some service-bus. It is suitable for

M2M (IoT) applications due to the asynchronous nature for

the most of the services. E.g., for the most of sensors, data

reading requests are asynchronous. So, service (message)

bus lets application post requests and read response later

(Figure 6)

Figure 6. Message Bus

Actually, Publish/Subscribe model is widely used in IoT

applications. The reasons for this are obvious too. It is easy

with this model to add new components (read - a new

functionality) without any changes to the existing

components. Any new functionality could be deployed step

by step and this process does affect the already deployed

components. And the service-bus deployment itself can use

clustering and load balancing to improve scalability by

distributing the workload across nodes.

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 2, no. 9, 2014

 27

REFERENCES

[1] Uckelmann, Dieter, Mark Harrison, and Florian Michahelles. "An

architectural approach towards the future internet of things."

Architecting the internet of things. Springer Berlin Heidelberg, 2011.

1-24.

[2] Namiot, D., & Sneps-Sneppe, M. (2014). On M2M Software

Platforms. International Journal of Open Information Technologies,

2(8), 29-33.

[3] Namiot, D., & Sneps-Sneppe, M. (2014). On M2M Software.

International Journal of Open Information Technologies, 2(6), 29-36.

[4] Schneps-Schneppe, M., Namiot, D., Maximenko, A., & Malov, D.

(2012, October). Wired Smart Home: energy metering, security, and

emergency issues. In Ultra Modern Telecommunications and Control

Systems and Workshops (ICUMT), 2012 4th International Congress

on (pp. 405-410). IEEE.

[5] “ETSI Machine-to-Machine Communications info and drafts”

http://docbox.etsi.org/M2M/Open/ Retrieved: Jul, 2014.

[6] Hassan, M., Zhao, W., & Yang, J. (2010, July). Provisioning web

services from resource constrained mobile devices. In Cloud

Computing (CLOUD), 2010 IEEE 3rd International Conference on

(pp. 490-497). IEEE.

[7] Microservices http://microservices.io/patterns/microservices.html

Retrieved: Aug, 2014

[8] Elmangoush, A., Al-Hezmi, A., & Magedanz, T. (2013, December).

Towards Standard M2M APIs for Cloud-based Telco Service

Platforms. In Proceedings of International Conference on Advances in

Mobile Computing & Multimedia (p. 143). ACM.

[9] Martin, Robert Cecil. Agile software development: principles,

patterns, and practices. Prentice Hall PTR, 2003.

[10] Abbott, Martin L., and Michael T. Fisher. The art of scalability:

Scalable web architecture, processes, and organizations for the

modern enterprise. Pearson Education, 2009

[11] The scale cube http://akfpartners.com/techblog/2008/05/08/splitting-

applications-or-services-for-scale/ Retrived: Aug, 2014

[12] Stonebraker, M. (2010). SQL databases v. NoSQL databases.

Communications of the ACM, 53(4), 10-11.

[13] Heineman, George T., and William T. Councill. "Component-based

software engineering." Putting the Pieces Together, Addison-Westley

(2001).

[14] Gorton, Ian, Anna Liu, and Paul Brebner. "Rigorous evaluation of

COTS middleware technology." Computer 36.3 (2003): 50-55.

[15] Libchan https://github.com/docker/libchan Retrieved: Aug, 2014

[16] Dayal, U., Garcia-Molina, H., Hsu, M., Kao, B., & Shan, M. C.

(1993, June). Third generation TP monitors: A database challenge. In

ACM Sigmod Record (Vol. 22, No. 2, pp. 393-397). ACM.

[17] Reijers, N., Lin, K. J., Wang, Y. C., Shih, C. S., & Hsu, J. Y. (2013).

Design of an Intelligent Middleware for Flexible Sensor

Configuration in M2M Systems. In SENSORNETS (pp. 41-46).

[18] Sneps-Sneppe, M., & Namiot, D. (2012, April). About M2M

standards and their possible extensions. In Future Internet

Communications (BCFIC), 2012 2nd Baltic Congress on (pp. 187-

193). IEEE.

