
International Journal of Open Information Technologies ISSN: 2307-8162 vol. 10, no. 5, 2022

Abstract— The paper deals with the issues of formal
verification of machine learning systems. With the
growth of the introduction of systems based on machine
learning in the so-called critical systems (systems with a
very high cost of erroneous decisions and actions), the
demand for confirmation of the stability of such systems
is growing. How will the built machine learning system
perform on data that is different from the set on which it
was trained? Is it possible to somehow verify or even
prove that the behavior of the system, which was
demonstrated on the initial dataset, will always remain
so? There are different ways to try to do this. The article
provides an overview of existing approaches to formal
verification. All the considered approaches already have
practical applications, but the main question that
remains open is scaling. How applicable are these
approaches to modern networks with millions and even
billions of parameters?

Keywords— machine learning; formal verification; robust
models

I. INTRODUCTION
This article is an extended presentation of the report at the

DCCN 2021 conference [1]. The article is a continuation of
a series of publications devoted to sustainable machine
learning models [2, 3, 4]. It was prepared as part of the
project of the Department of Information Security of the
Faculty of Computer Science of Lomonosov Moscow State
University on the creation and development of the master's
program "Artificial Intelligence in Cybersecurity" [5].

Neural networks and machine learning are among the

most successful technologies today, which are usually
referred to as the direction of artificial intelligence. At the
same time, from the very beginning of the use of these
technologies, the issue of justifying the solutions obtained
has never been at the forefront. On the contrary, machine
learning gained its popularity precisely for solving problems
where it was impossible (or it was too difficult) to offer an
analytical solution or a deterministic algorithm. The results

The paper received 12 Feb 2022. This research has been supported by the
Interdisciplinary Scientific, Educational School of Moscow University
”Brain, Cognitive Systems, Artificial Intelligence”
Dmitry Namiot – Lomonosov Moscow State University (email:
dnamiot@gmail.com)
Eugene Ilyushin - Lomonosov Moscow State University (email:
john.ilyushin@gmail.com)
Ivan Chizhov - Lomonosov Moscow State University (email:
ichizhov@cs.msu.ru).

were initially seen as some kind of magical black box. And
only then, there were questions of explaining the solutions
obtained [6]. In fact, these explanations are needed just in
order to be able to evaluate the data obtained, to evaluate the
proposed solutions, etc. Obviously, there are areas of
application where the black box is not applicable.
Irreversible decisions, for example, in medicine, require
explanation.

Due to the fact that these technologies began to be used
for critical applications, the question arose of proving the
validity of the solutions generated (obtained) with their help.
Explanations are also part of the rationale. The explanations
themselves are closely related to the applied models. For
example, decision trees are, to some extent, explanations [7],
the same can be said about regression. Everyone messes with
deep learning models, where hidden layers, as their name
suggests, hide data processing and make explanations as
difficult as possible. DNNs can contain millions of
parameters, resulting in overly large search spaces for
automated reasoning algorithms [8]. The literature notes that
the task in automated verification of neural networks is the
coordination of machine learning and automated reasoning
[9]. There is another problem with the assessment
(justification) of machine learning results, which is of a
fundamental nature. Regardless of the models used, the
methods for obtaining independent parameters (features), the
choice of analyzed variables, etc., any machine learning
models always try to extend the results obtained from the
analysis of a certain subset of data to the entire population.
In general, there may be no reason for such a generalization.
This is the main problem. Even explaining how the system
works on a training dataset will not help if it turns out that
the model does not work on real data. Accordingly, the
problem of reliability consists in checking (verifying) that
the constructed system operates on data that differ from
those on which it was trained.

In this regard, we should talk about the robustness
(stability) of the machine learning system. Robust (reliable)
and safe machine learning systems are systems whose
behavior during operation does not differ from that declared
at the testing and training stage.

In computer science (informatics), robustness is the ability

of a computer system to cope with errors during execution
[10, 11], as well as the ability to cope with erroneous input
[11]. In the latter work, robustness is defined as: ”The
degree to which a system or component can function
correctly in the presence of invalid inputs or stressful
environmental conditions.” Robustness can encompass many

On a formal verification of machine learning
systems

Dmitry Namiot, Eugene Ilyushin, Ivan Chizhov

30

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 10, no. 5, 2022

areas of computer science such as robust (reliable)
programming, robust machine learning, robust safety net,
etc. Formal methods such as fuzzing testing [12] are
necessary to demonstrate robustness because this type of
testing includes incorrect or unexpected inputs.

Alternatively, artificial injection of faults (in the English-
language literature - fault injection) can be used to test
stability.

Robust (reliable) machine learning is usually understood

as the robustness (reliability) of machine learning
algorithms. For a machine learning algorithm to be
considered reliable, either the testing error must be
consistent with the training error, or the performance must
be stable after adding some noise to the dataset.

Formally, for example, for a classification system, this can

be defined as follows:
Some classifier C is σ-robust, at the point x only and if
 ||x − x0||∞ ≤ σ ⇒ C(x) = C(x0)

An intuitive definition says that if the difference between

the original data for all dimensions in the feature space does
not exceed σ, then such objects should be classified in the
same way. It is important that we note exactly the problems
(changes) in the data. Nothing is said about the nature of
these changes. It may also be a training error – the selected
dataset is very different from the known general population,
it may be wrong conclusions (assumptions) in algorithms,
wrong choice and work with properties (features), as well as
deliberately introduced measurements into the initial data
sets, which put purpose, for example, a required change in
system operation.

Studying the robustness of machine learning systems, as
well as explaining the operation of such systems (explaining

the obtained results), has many aspects. A special
modification (or selection) of data that interferes with the
normal operation of the system (or vice versa, predetermines
its result) is called adversarial examples [13] or an attack
[14]. It should be noted that the term “attack” here should be
understood in a broader sense – it is not necessarily some
kind of special malicious data corruption. This should be
interpreted, rather, as the presentation (discovery) of a
refuting example. Such a dataset can exist without artificial
modifications. A typical example from [16]: the paper
describes a scenario in which an autonomous car seeks to
change lanes. There is a human-driven car in the other lane,
and as we know, people can be unpredictable. An
autonomous vehicle has been trained to believe that a person
will act in a way that makes overtaking safe. In fact, a person
acts a little differently - and the result is an accident. This
article is devoted to one of the possible aspects of
confirming the results of ML systems - formal verification.

II. ON FORMAL VERIFICATION
The general idea of a formal verification is that we are

trying to determine the properties (characteristics) that the
neural network should satisfy and use one way or another to
verify these properties. There are some parallels with
assertions in programming. A statement in programming is a
statement in which a predicate (logical expression) must
always have a true value in a given part of the code.
Programs check assertions by actually evaluating the
predicate at runtime, and if, in fact, the predicate is false, the
program deliberately stops or throws an exception.
Assertions can make the code easier to read, help the
compiler compile the code, or help detect defects in the
program [10].

Fig 1. Formal verification [12]

Figure 1 [12] shows one of the possible classifications of

formal verification systems. Here are 4 approaches:

• Theorem proving ML verification
• Linear programming based verification.
• SAT / SMT verification
• Incomplete verification

31

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 10, no. 5, 2022

An example of the need for verification: One area where

formal verification can be of great importance is in
autonomous vehicles such as cars and airplanes. ACAS Xu
(Fig. 2) is an unmanned aerial vehicle collision avoidance
system.

Fig. 2. ACAS Xu [14]

Until recently, the system used a large look-up table
mapping sensor measurements to actions to be taken. Later,
a neural network approach was used instead of a table as a
possible replacement. Memory consumption has been
reduced from 2 GB to 3 MB. The problem, however, was
that it was difficult to prove that erroneous behavior did not
exist in a neural network. Thus, the networks and the
security of their use could not be certified [13].

While the above approaches differ in several aspects, they
all solve the problem of validation by coding networks
within the chosen system of restrictions [3].

SAT solution is aimed at checking the satisfiability of the
formula of propositional logic (the logic of statements) -
represented as Boolean combinations of atomic (Boolean)
sentences. Accordingly, the condition of applicability is the
ability to represent (compose) such logical expressions for a
real network. The satisfiability modulo theories (SMT)
problem is a solvability problem for logical formulas, taking
into account the underlying theories. Examples of such
theories for SMT formulas are: theories of integers and real
numbers, the theory of lists, arrays, bit vectors, etc.
Formally, an SMT formula is a formula in first order logic in
which some functions and predicate symbols have additional
interpretations. The challenge is to determine if a given
formula is feasible. Unlike the problem of satisfiability of
Boolean formulas, an SMT formula contains arbitrary
variables instead of Boolean variables, and predicates are
Boolean functions of these variables.

Accordingly, the condition of applicability is the ability to
represent (compose) such logical expressions for a real
network.

The Marabou framework [15] can be cited as an example
of a system for software verification of neural networks. As
described, Marabou is an SMT-based tool that can respond
to requests for network properties by converting those
requests into constraint checks. It can handle networks with
different activation functions and topologies. However, a

little further down the text, it turns out that Marabou
supports feed-forward networks and convolutional networks
with piecewise linear activation functions in TensorFlow.
Marabou can respond to several types of test requests
(Figure 3):

Safety: if the input is in a given range, will it be
guaranteed to be in a certain range?

Stability: check if there are points (measurements) around
a given entry point (input measurement) that change the
network output.

Fig. 3. Marabou [15]

Here's what it might look like at the code level (example
from the Marabou package). This snippet uses a trained
Tensorflow model that has two inputs and two outputs

from maraboupy import Marabou
import numpy as np

#This network has inputs x0, x1, and was

trained to create outputs that approximate
y0 = abs(x0) + abs(x1), y1 = x02 + x12

load model
filename=”fc1.pb"
network = Marabou.read_tf(filename)

#Get the input and output variable numbers;
#[0] since the first dimension is batch

size

inputVars = network.inputVars[0][0]
outputVars = network.outputVars[0]

#Set input bounds on both input variables
network.setLowerBound(inputVars[0],-10.0)
network.setUpperBound(inputVars[0], 10.0)
network.setLowerBound(inputVars[1],-10.0)
network.setUpperBound(inputVars[1], 10.0)

#Set output bounds on the second
#output variable
network.setLowerBound(outputVars[1], 194.0)
network.setUpperBound(outputVars[1], 210.0)

#Call to C++ Marabou solver

 vals, stats = network.solve("marabou.log")

Incomplete verification is understood as the process of
verification of some approximation of the system.
Incomplete verification often uses abstract interpretation,
linear approximation, and other similar approaches to
formally model the system (Fig. 4). As a result, the system
model is not an exact representation of the real system, but
rather some redundant approximation of it. Verification is
then performed on this approximate model, as shown in Fig.

32

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 10, no. 5, 2022

4 below.

Fig. 4. Incomplete verification [12]

It is important to note that modeling/testing, which also
gives incomplete results, should not be confused with
incomplete verification. This is because when testing, the
system is treated as a black box, and the tester analyzes the
behavior of the system by feeding finite sets of inputs to the
black box and recording the output. In contrast, in
incomplete verification, the system is a "white box", which
is a simplified version of the real system on which formal
verification is performed.

III. ON DISCUSSION
First, it is necessary to dwell on the initial data for
verification. As mentioned in the examples above, the input
data is the bounds for the possible values of the input
variables. It is typical for robustness testing tasks to test
system performance on data with minimal deviations from
some known input samples. Actually, this is how attacks on
machine learning systems are built - to find minimal
deviations (imperceptible to humans) that nevertheless
disrupt the system. It is clear why this is done in this way - a
program (algorithmic) way of constructing attacking
examples is needed. But let's ask a simple question - what
difference does it make how much an attacking example
differs from known (correctly processed) examples?
Invisibility to humans should not play any role at all for
critical applications, since in such systems decisions are
made without human intervention. And the task of
verification should be to confirm the operation of the system
on all available (possible to obtain, taking into account the
physical limitations of a particular system) data.

Another issue may be that the feature space does not
necessarily include only directly measurable (observable)
characteristics, where this difference in measurements can
have a physical interpretation. What if such features are
artificially constructed based on real measurements and
other constructed features? What is the physical
interpretation (which is, by the way, part of explaining how
the system works) for modifications in this case? In this
case, what does it mean to “check in the neighborhood" of
some input point, if such a parameter is derived from the
initial ones? A typical example is the features formed in

speech recognition problems (wavelet transformation etc.)
[16].

Regarding the predicates for verification, the most
reasonable, in our opinion, are the generalizations made in
[3].

At the top level, a neural network can be represented as a
function In → Om, which maps the input domain I of
dimension n (n<0) to the output domain O, of dimension m.
Let pre (x) и post (y) are first-order logical formulas, x and y
are free variables of type SI and SO, respectively. The
formulas pre define the pre-conditions, post – define the
post-conditions.

The interpretation maps the variables x and y to values in the
In and Om domains, respectively. The expression L(x → e)
denotes that the variable x is mapped to a value e ∈ In in the
interpretation of L, and ϕ L denotes the value of the
expression ϕ in the interpretation of L. All published
studies on automatic verification of neural networks can be
reduced to three types of checks [3]:

Invariance. For certain conditions before and after the
assertion of the invariance of the property for the network v
is defined as:
∀x.∀y. (pre (x) ∧ y = ν (x)) ⇒ post (y)
The goal of automated verification is to prove this statement
or find a counterexample, i.e. some value e ∈ In such that
 (pre (x) ∧ post (y))L (x → e, y → ν (e)) is true.

Reversibility. For certain conditions before and after the
approval of the reversibility property for the network ν is
defined as
∀y.∃x. (post (y) ∧ y = ν (x)) ⇒ pre (x)
Such a condition must either be proved or a specified
implementation must be found, i.e. for a pattern p ∈ Om find
an input pattern e ∈ In , such that
(post (y) ∧ y = ν (x) ∧ pre (x)) L (x → e, y → p) is true.

Equivalence. While invariance and reversibility refer to the
same network, equivalence is a property involving the two
networks ν and ν′. For example, this is an incomplete

33

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 10, no. 5, 2022

verification in Figure 1, where there is an approximating
network. For certain conditions before and after the
equivalence is defined as
∀x.∀y.∀w (pre (x) ∧ y = ν (x) ∧ post (y) ∧w = ν′(x) ∧ post
(w)) ⇒ y = w

Such a condition can either be proved as such, or a
counterexample can be given, that is, some e ∈ In such that
(pre (x) ∧ post (y) ∧ post (w) ∧ y w)L (x → e, y → ν (e), w → ν′(е))
is true.

In contexts where strict equality may not be appropriate, we
can replace the expression y = w in the definition with
 || y - w || < δ , assuming that || • || L - is the norm in Om and
δ ∈ Om – is the tolerance, that is, the threshold at which the
considered response of the networks will be
indistinguishable. The possibility of putting forward
(formulating) such a condition should be conditioned by the
physical meaning of the problem being solved.

And the main question, the answer to which remains open -
is it possible to manually formulate such a set of predicates
for a network with millions (billions) of parameters? Or do
we need another artificial intelligence (program) that can
formulate these conditions? But in this case, it is obvious
that such a program will be able to build the necessary
neural network itself.

IV. CONCLUSION

As with other approaches to testing the robustness of
machine learning systems, we cannot note universal methods
for formal verification. The possibility of using certain
approaches depends on the formulations of the problems
(problems to be solved), since it is the formulations of the
problem that determine the possibilities of setting
conditions. Potential data variances for adversarial examples
should also be task-specific. Based on the description of
formal verification methods, for classification (recognition)
problems, the most suitable models are those oriented to
checking equivalence. Only incomplete verification seems
feasible in the current conditions of an infinite growth in the
number of parameters in machine learning models. At the
same time, in the general case, we have no reason to
automatically transfer the conclusions obtained on an
incomplete (simplified) network to the original network.

ACKNOWLEDGMENTS
We are grateful to the staff of the Department of Information
Security of the Faculty of Computational Mathematics and

Cybernetics of Moscow State University named after M.V.
Lomonosov for valuable discussions of this work.

БИБЛИОГРАФИЯ
[1] DCCN 2021 https://2021.dccn.ru/ Retrieved: Mar, 2022
[2] Ilyushin, E., Namiot, D., & Chizhov, I. (2022). Attacks on machine

learning systems-common problems and methods. International
Journal of Open Information Technologies, 10(3), 17-22.

[3] Namiot, D., Ilyushin, E., & Chizhov, I. (2021). The rationale for
working on robust machine learning. International Journal of Open
Information Technologies, 9(11), 68-74.

[4] Namiot, D., Ilyushin, E., & Chizhov, I. (2021). Military applications
of machine learning. International Journal of Open Information
Technologies, 10(1), 69-76.

[5] Artificial Intelligence in Cybersecurity.
http://master.cmc.msu.ru/?q=ru/node/3496 (in Russian) Retrieved:
Apr, 2022

[6] Roscher, Ribana, et al.”Explainable machine learning for scientific
insights and discoveries.” IEEE Access 8 (2020): 42200-42216.

[7] Došilović, Filip Karlo, Mario Brčić, and Nikica Hlupić. "Explainable
artificial intelligence: A survey." 2018 41st International convention
on information and communication technology, electronics and
microelectronics (MIPRO). IEEE, 2018.

[8] Leofante, Francesco, et al. ”Automated verification of neural
networks: Advances, challenges and perspectives.” arXiv preprint
arXiv:1805.09938 (2018).

[9] Bride, Hadrien, et al. ”Towards dependable and explainable machine
learning using automated reasoning.” International Conference on
Formal Engineering Methods. Springer, Cham, 2018.

[10] ”A Model-Based Approach for Robustness Testing” (PDF).
Dl.ifip.org. Retrieved 01-02-2022.

[11] 1990. IEEE Standard Glossary of Software Engineering Terminology,
IEEE Std 610.12-1990

[12] Chen, Chen, et al.”A systematic review of fuzzing techniques.”
Computers & Security 75 (2018): 118-137.

[13] Huang, Ling, et al.”Adversarial machine learning.” Proceedings of
the 4th ACM workshop on Security and artificial intelligence. 2011.

[14] Rouani, Bita Darvish, et al.”Safe machine learning and defeating
adversarial attacks.” IEEE Security & Privacy 17.2 (2019): 31-38.

[15] Plösch, Reinhold. "Evaluation of assertion support for the java
programming language." Journal of Object Technology 1.3 (2002): 5-
17.

[16] Dorsa Sadigh, S. Shankar Sastry, Sanjit A. Seshia, and U.C.
Berkeley. “Verifying robustness of human-aware autonomous cars”.
In: IFAC-PapersOnLine 51.34 (2019), pp. 131–138.

[17] Shafique, Muhammad, et al.”Robust machine learning systems:
Challenges, current trends, perspectives, and the road ahead.” IEEE
Design & Test 37.2 (2020): 30-57.

[18] Guy Katz, Clark Barrett, David Dill, Kyle Julian, and Mykel
Kochenderfer. “Reluplex: An efficient SMT solver for verifying deep
neural networks”. In: International Conference on Computer Aided
Verification . Springer. 2017, pp. 97–117.

[19] Lin, Xuankang, et al.”ART: abstraction refinement-guided training
for provably correct neural networks.” 2020 Formal Methods in
Computer Aided Design (FMCAD). IEEE, 2020.

[20] Marabou https://github.com/NeuralNetworkVerification/Marabou
[21] Wang, Kunxia, et al.”Wavelet packet analysis for speaker-

independent emotion recognition.” Neurocomputing 398 (2020): 257-
264.

.

34

	I. Introduction
	II. On formal verification
	III. On Discussion
	IV. Conclusion
	Acknowledgments
	Библиография

