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Abstract— The paper deals with the issues of formal 
verification of machine learning systems. With the 
growth of the introduction of systems based on machine 
learning in the so-called critical systems (systems with a 
very high cost of erroneous decisions and actions), the 
demand for confirmation of the stability of such systems 
is growing. How will the built machine learning system 
perform on data that is different from the set on which it 
was trained? Is it possible to somehow verify or even 
prove that the behavior of the system, which was 
demonstrated on the initial dataset, will always remain 
so? There are different ways to try to do this. The article 
provides an overview of existing approaches to formal 
verification. All the considered approaches already have 
practical applications, but the main question that 
remains open is scaling. How applicable are these 
approaches to modern networks with millions and even 
billions of parameters? 
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I. INTRODUCTION 
This article is an extended presentation of the report at the 

DCCN 2021 conference [1]. The article is a continuation of 
a series of publications devoted to sustainable machine 
learning models [2, 3, 4]. It was prepared as part of the 
project of the Department of Information Security of the 
Faculty of Computer Science of Lomonosov Moscow State 
University on the creation and development of the master's 
program "Artificial Intelligence in Cybersecurity" [5]. 

 
Neural networks and machine learning are among the 

most successful technologies today, which are usually 
referred to as the direction of artificial intelligence. At the 
same time, from the very beginning of the use of these 
technologies, the issue of justifying the solutions obtained 
has never been at the forefront. On the contrary, machine 
learning gained its popularity precisely for solving problems 
where it was impossible (or it was too difficult) to offer an 
analytical solution or a deterministic algorithm. The results 
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were initially seen as some kind of magical black box. And 
only then, there were questions of explaining the solutions 
obtained [6]. In fact, these explanations are needed just in 
order to be able to evaluate the data obtained, to evaluate the 
proposed solutions, etc. Obviously, there are areas of 
application where the black box is not applicable. 
Irreversible decisions, for example, in medicine, require 
explanation.  

Due to the fact that these technologies began to be used 
for critical applications, the question arose of proving the 
validity of the solutions generated (obtained) with their help. 
Explanations are also part of the rationale. The explanations 
themselves are closely related to the applied models. For 
example, decision trees are, to some extent, explanations [7], 
the same can be said about regression. Everyone messes with 
deep learning models, where hidden layers, as their name 
suggests, hide data processing and make explanations as 
difficult as possible. DNNs can contain millions of 
parameters, resulting in overly large search spaces for 
automated reasoning algorithms [8]. The literature notes that 
the task in automated verification of neural networks is the 
coordination of machine learning and automated reasoning 
[9]. There is another problem with the assessment 
(justification) of machine learning results, which is of a 
fundamental nature. Regardless of the models used, the 
methods for obtaining independent parameters (features), the 
choice of analyzed variables, etc., any machine learning 
models always try to extend the results obtained from the 
analysis of a certain subset of data to the entire population. 
In general, there may be no reason for such a generalization. 
This is the main problem. Even explaining how the system 
works on a training dataset will not help if it turns out that 
the model does not work on real data. Accordingly, the 
problem of reliability consists in checking (verifying) that 
the constructed system operates on data that differ from 
those on which it was trained.  

In this regard, we should talk about the robustness 
(stability) of the machine learning system. Robust (reliable) 
and safe machine learning systems are systems whose 
behavior during operation does not differ from that declared 
at the testing and training stage. 

 
In computer science (informatics), robustness is the ability 

of a computer system to cope with errors during execution 
[10, 11], as well as the ability to cope with erroneous input 
[11]. In the latter work, robustness is defined as: ”The 
degree to which a system or component can function 
correctly in the presence of invalid inputs or stressful 
environmental conditions.” Robustness can encompass many 
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areas of computer science such as robust (reliable) 
programming, robust machine learning, robust safety net, 
etc. Formal methods such as fuzzing testing [12] are 
necessary to demonstrate robustness because this type of 
testing includes incorrect or unexpected inputs. 

Alternatively, artificial injection of faults (in the English-
language literature - fault injection) can be used to test 
stability. 

 
Robust (reliable) machine learning is usually understood 

as the robustness (reliability) of machine learning 
algorithms. For a machine learning algorithm to be 
considered reliable, either the testing error must be 
consistent with the training error, or the performance must 
be stable after adding some noise to the dataset. 

 
Formally, for example, for a classification system, this can 

be defined as follows: 
Some classifier C is σ-robust, at the point x only and if 
 ||x − x0||∞ ≤ σ ⇒ C(x) = C(x0)  
 
An intuitive definition says that if the difference between 

the original data for all dimensions in the feature space does 
not exceed σ, then such objects should be classified in the 
same way. It is important that we note exactly the problems 
(changes) in the data. Nothing is said about the nature of 
these changes. It may also be a training error – the selected 
dataset is very different from the known general population, 
it may be wrong conclusions (assumptions) in algorithms, 
wrong choice and work with properties (features), as well as 
deliberately introduced measurements into the initial data 
sets, which put purpose, for example, a required change in 
system operation. 

Studying the robustness of machine learning systems, as 
well as explaining the operation of such systems (explaining 

the obtained results), has many aspects. A special 
modification (or selection) of data that interferes with the 
normal operation of the system (or vice versa, predetermines 
its result) is called adversarial examples [13] or an attack 
[14]. It should be noted that the term “attack” here should be 
understood in a broader sense – it is not necessarily some 
kind of special malicious data corruption. This should be 
interpreted, rather, as the presentation (discovery) of a 
refuting example. Such a dataset can exist without artificial 
modifications. A typical example from [16]: the paper 
describes a scenario in which an autonomous car seeks to 
change lanes. There is a human-driven car in the other lane, 
and as we know, people can be unpredictable. An 
autonomous vehicle has been trained to believe that a person 
will act in a way that makes overtaking safe. In fact, a person 
acts a little differently - and the result is an accident. This 
article is devoted to one of the possible aspects of 
confirming the results of ML systems - formal verification. 

II. ON FORMAL VERIFICATION 
The general idea of a formal verification is that we are 

trying to determine the properties (characteristics) that the 
neural network should satisfy and use one way or another to 
verify these properties. There are some parallels with  
assertions in programming. A statement in programming is a 
statement in which a predicate (logical expression) must 
always have a true value in a given part of the code. 
Programs check assertions by actually evaluating the 
predicate at runtime, and if, in fact, the predicate is false, the 
program deliberately stops or throws an exception. 
Assertions can make the code easier to read, help the 
compiler compile the code, or help detect defects in the 
program [10]. 

Fig 1. Formal verification [12] 
 
 
Figure 1 [12] shows one of the possible classifications of 

formal verification systems. Here are 4 approaches: 

 
• Theorem proving ML verification 
• Linear programming based verification. 
• SAT / SMT verification 
• Incomplete verification 
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An example of the need for verification: One area where 

formal verification can be of great importance is in 
autonomous vehicles such as cars and airplanes. ACAS Xu 
(Fig. 2) is an unmanned aerial vehicle collision avoidance 
system.  

 
Fig. 2. ACAS Xu [14] 
 
Until recently, the system used a large look-up table 
mapping sensor measurements to actions to be taken. Later, 
a neural network approach was used instead of a table as a 
possible replacement. Memory consumption has been 
reduced from 2 GB to 3 MB. The problem, however, was 
that it was difficult to prove that erroneous behavior did not 
exist in a neural network. Thus, the networks and the 
security of their use could not be certified [13].  

While the above approaches differ in several aspects, they 
all solve the problem of validation by coding networks 
within the chosen system of restrictions [3]. 

SAT solution is aimed at checking the satisfiability of the 
formula of propositional logic (the logic of statements) - 
represented as Boolean combinations of atomic (Boolean) 
sentences. Accordingly, the condition of applicability is the 
ability to represent (compose) such logical expressions for a 
real network. The satisfiability modulo theories (SMT) 
problem is a solvability problem for logical formulas, taking 
into account the underlying theories. Examples of such 
theories for SMT formulas are: theories of integers and real 
numbers, the theory of lists, arrays, bit vectors, etc. 
Formally, an SMT formula is a formula in first order logic in 
which some functions and predicate symbols have additional 
interpretations. The challenge is to determine if a given 
formula is feasible. Unlike the problem of satisfiability of 
Boolean formulas, an SMT formula contains arbitrary 
variables instead of Boolean variables, and predicates are 
Boolean functions of these variables. 

Accordingly, the condition of applicability is the ability to 
represent (compose) such logical expressions for a real 
network. 

The Marabou framework [15] can be cited as an example 
of a system for software verification of neural networks. As 
described, Marabou is an SMT-based tool that can respond 
to requests for network properties by converting those 
requests into constraint checks. It can handle networks with 
different activation functions and topologies. However, a 

little further down the text, it turns out that Marabou 
supports feed-forward networks and convolutional networks 
with piecewise linear activation functions in TensorFlow. 
Marabou can respond to several types of test requests 
(Figure 3): 

Safety: if the input is in a given range, will it be 
guaranteed to be in a certain range?  

Stability: check if there are points (measurements) around 
a given entry point (input measurement) that change the 
network output. 

 

 
Fig. 3. Marabou [15] 
 
Here's what it might look like at the code level (example 
from the Marabou package). This snippet uses a trained 
Tensorflow model that has two inputs and two outputs 
 
from maraboupy import Marabou 
import numpy as np 
 
#This network has inputs x0, x1, and was 

trained to create outputs that approximate  
# y0 = abs(x0) + abs(x1), y1 = x02 + x12 
 
# load model 
filename=”fc1.pb" 
network = Marabou.read_tf(filename) 
 
#Get the input and output variable numbers;    
#[0] since the first dimension is batch 

size 
 
inputVars = network.inputVars[0][0] 
outputVars = network.outputVars[0] 
 
#Set input bounds on both input variables 
network.setLowerBound(inputVars[0],-10.0) 
network.setUpperBound(inputVars[0], 10.0) 
network.setLowerBound(inputVars[1],-10.0) 
network.setUpperBound(inputVars[1], 10.0) 
 
#Set output bounds on the second  
#output variable 
network.setLowerBound(outputVars[1], 194.0) 
network.setUpperBound(outputVars[1], 210.0) 
 
#Call to C++ Marabou solver 

  vals, stats = network.solve("marabou.log") 
 
Incomplete verification is understood as the process of 
verification of some approximation of the system. 
Incomplete verification often uses abstract interpretation, 
linear approximation, and other similar approaches to 
formally model the system (Fig. 4). As a result, the system 
model is not an exact representation of the real system, but 
rather some redundant approximation of it. Verification is 
then performed on this approximate model, as shown in Fig. 
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4 below.  

 
Fig. 4. Incomplete verification [12]
 
It is important to note that modeling/testing, which also 
gives incomplete results, should not be confused with 
incomplete verification. This is because when testing, the 
system is treated as a black box, and the tester analyzes the 
behavior of the system by feeding finite sets of inputs to the 
black box and recording the output. In contrast, in 
incomplete verification, the system is a "white box", which 
is a simplified version of the real system on which formal 
verification is performed. 

III. ON DISCUSSION 
First, it is necessary to dwell on the initial data for 
verification. As mentioned in the examples above, the input 
data is the bounds for the possible values of the input 
variables. It is typical for robustness testing tasks to test 
system performance on data with minimal deviations from 
some known input samples. Actually, this is how attacks on 
machine learning systems are built - to find minimal 
deviations (imperceptible to humans) that nevertheless 
disrupt the system. It is clear why this is done in this way - a 
program (algorithmic) way of constructing attacking 
examples is needed. But let's ask a simple question - what 
difference does it make how much an attacking example 
differs from known (correctly processed) examples? 
Invisibility to humans should not play any role at all for 
critical applications, since in such systems decisions are 
made without human intervention. And the task of 
verification should be to confirm the operation of the system 
on all available (possible to obtain, taking into account the 
physical limitations of a particular system) data. 
 
Another issue may be that the feature space does not 
necessarily include only directly measurable (observable) 
characteristics, where this difference in measurements can 
have a physical interpretation. What if such features are 
artificially constructed based on real measurements and 
other constructed features? What is the physical 
interpretation (which is, by the way, part of explaining how 
the system works) for modifications in this case? In this 
case, what does it mean to “check in the neighborhood" of 
some input point, if such a parameter is derived from the 
initial ones? A typical example is the features formed in 

speech recognition problems (wavelet transformation etc.) 
[16]. 
 
Regarding the predicates for verification, the most 
reasonable, in our opinion, are the generalizations made in 
[3]. 
 
At the top level, a neural network can be represented as a 
function In → Om, which maps the input domain I of 
dimension n (n<0) to the output domain O, of dimension m. 
Let pre (x) и post (y) are first-order logical formulas, x and y 
are free variables of type SI and SO, respectively. The 
formulas pre define the pre-conditions, post – define the 
post-conditions. 
 
The interpretation maps the variables x and y to values in the 
In and Om domains, respectively. The expression L(x → e) 
denotes that the variable x is mapped to a value e ∈ In   in the 
interpretation of L, and ϕ L  denotes the value of the 
expression ϕ  in the interpretation of L. All published 
studies on automatic verification of neural networks can be 
reduced to three types of checks [3]: 
 
Invariance. For certain conditions before and after the 
assertion of the invariance of the property for the network v 
is defined as: 
∀x.∀y. (pre (x) ∧ y = ν (x))  ⇒ post (y)     
The goal of automated verification is to prove this statement 
or find a counterexample, i.e. some value e ∈ In such that 
 (pre (x) ∧ post (y))L (x → e, y → ν (e))  is true. 
 
Reversibility. For certain conditions before and after the 
approval of the reversibility property for the network ν is 
defined as 
∀y.∃x. (post (y) ∧ y = ν (x))  ⇒ pre (x)  
Such a condition must either be proved or a specified 
implementation must be found, i.e. for a pattern p ∈ Om find 
an input pattern e ∈  In , such that  
(post (y) ∧ y = ν (x) ∧ pre (x)) L (x → e, y → p)   is true. 
 
Equivalence. While invariance and reversibility refer to the 
same network, equivalence is a property involving the two 
networks ν and ν′. For example, this is an incomplete 
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verification in Figure 1, where there is an approximating 
network. For certain conditions before and after the 
equivalence is defined as  
∀x.∀y.∀w (pre (x) ∧ y = ν (x) ∧ post (y) ∧w = ν′(x) ∧ post 
(w)) ⇒ y = w 
 
Such a condition can either be proved as such, or a 
counterexample can be given, that is, some e ∈ In such that 
(pre (x) ∧ post (y) ∧ post (w) ∧ y   w)L (x → e, y → ν (e), w → ν′(е))  
is true. 
 
In contexts where strict equality may not be appropriate, we 
can replace the expression y = w in the definition with 
 || y - w || < δ  , assuming that || • || L  - is the norm in Om and  
δ  ∈ Om – is the tolerance, that is, the threshold at which the 
considered response of the networks will be 
indistinguishable. The possibility of putting forward 
(formulating) such a condition should be conditioned by the 
physical meaning of the problem being solved. 
 
And the main question, the answer to which remains open - 
is it possible to manually formulate such a set of predicates 
for a network with millions (billions) of parameters? Or do 
we need another artificial intelligence (program) that can 
formulate these conditions? But in this case, it is obvious 
that such a program will be able to build the necessary 
neural network itself. 

IV. CONCLUSION 

As with other approaches to testing the robustness of 
machine learning systems, we cannot note universal methods 
for formal verification. The possibility of using certain 
approaches depends on the formulations of the problems 
(problems to be solved), since it is the formulations of the 
problem that determine the possibilities of setting 
conditions. Potential data variances for adversarial examples 
should also be task-specific. Based on the description of 
formal verification methods, for classification (recognition) 
problems, the most suitable models are those oriented to 
checking equivalence. Only incomplete verification seems 
feasible in the current conditions of an infinite growth in the 
number of parameters in machine learning models. At the 
same time, in the general case, we have no reason to 
automatically transfer the conclusions obtained on an 
incomplete (simplified) network to the original network. 
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