
International Journal of Open Information Technologies ISSN: 2307-8162 vol. 2, no. 8, 2014

 29

Abstract—This paper provides an overview for existing and

upcoming system software platforms for M2M applications. In

this article we discuss system software models from the

developer’s point of view, rather than network related aspects.

The primary goal is to find the common and reusable aspects

across existing models as well as discuss their possible

coexistence. Can we extract the common elements for the

different M2M software models? Are there some reusable

patterns? What should developers and system architects pay

attention to? These are the main issues addressed in this article.

Keywords—М2М, communications, software standards,

middleware.

I. INTRODUCTION

Machine-to-Machine (M2M) is a category of Information

and Computing Technology that combines communications,

computer and power technologies that enable remote

iterations with physical, chemical and biological systems and

processes [1]. Simply, M2M traditionally refers to

technologies that allow both wireless and wired systems to

communicate with other devices of the same ability. M2M

uses a device (such as a sensor or meter) to capture an event

(such as temperature, inventory level, etc.), which is relayed

through a network (wireless, wired or hybrid) to an

application (software program), translates the captured event

into meaningful information [2]. In other words, M2M is the

flow of data between network connected devices without the

need for human interaction. Connected devices are vehicle

tracking devices, parking meters, billboards, etc. The absent

(presence) of human interactions sets the difference between

M2M and Internet of Things (IoT).

The above mentioned paper [2] presented our first attempt

to classify M2M software projects. It summarized our

previous attempts, like [3][4]. Actually, the main conclusion

presented in the paper devoted to the standards of M2M

software is the statement about the lack of standards. We

think that there is no common standard for M2M software

right now, and we will not see such standards in the future.

We are seeing the future of M2M programming as a

perfect example of micro-service architecture [5]. In the

micro-service architecture a large number of very small

services are deployed and linked up to build systems. Each

individual service is focused on the one clearly specified

business problem. So, the full set of services is very

Article received Jul 20, 2014.

D.Namiot is senior researcher at Open Information Technologies Lab,

Lomonosov Moscow State University. Email: dnamiot@gmail.com

M. Sneps-Sneppe is with Institute of Mathematics and Computer

Science, University of Latvia. Email: sneps@mail.ru

understandable from the business point of view and very

scalable (horizontal scale) in the same time.

So, by our opinion, in M2M (IoT) applications we will

deal with many different APIs simultaneously. The key

factors are integration (in general, it is what micro-services

architecture is about) and time to market (as a key indicator

for the developers).

In this paper, we are trying to cover problems described in

[2] from another side. More precisely, we are going to

describe main exiting services and APIs with idea to

discover the common set of micro-services (the kernel of

M2M services). It will let us present the requirements for

integration of micro-services.

II. M2M PLATFORMS

There are three types of platforms that cover the M2M

Service Delivery platform market: Connected Device

Platforms (CDP), Application Enablement Platforms (AEP)

and Application Development Platform (ADP).

Connected Device Platforms are software elements that

help to facilitate the deployment and management of

connected devices for M2M applications over cellular

networks. Some of the vendors may use the abbreviation

DCT (Device Connection Platform) [6].

Application Enablement Platforms are designed to

provide the core features for multiple M2M applications.

They ease the data extraction and normalization activities, so

M2M applications and enterprise systems can easily

consume machine data. These platforms also assist in device

and machine management.

Application Development Platforms provide a

standardized service layer and APIs, as well as common

frameworks for cellular operators, service providers and

device manufacturers.

Of course, as for the most “classifications” in the

programming area, the boundary between platforms is not so

strong and clean. But in general, this classification lest split

systems by their core functionality.

Let us present some simple explanation for the

functionality.

CDP is about device management in the first hand.

Mostly, it is for telecom providers. Device management is

one of the first priorities for them.

AEP is shortly about clouds. As per the modern view, it is

about cloud-based data store and processing.

ADP is, probably, the most explainable and targets M2M

developers. Actually, the boundary between AEP and ADP

On M2M Software Platforms

Dmitry Namiot, Manfred Sneps-Sneppe

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 2, no. 8, 2014

 30

is very limited sometimes. AEP could include rich

development tools. So, some of the sources mention two

M2M platforms only: CDP and AEP.

The whole line from the top to bottom is: Application –

AEP – CDP

Technically, on the AEP level, we should deal with a wide

set of tasks. E.g., we can mention also API and SLA

exposure, Data management, service integration, ecosystem

for applications, etc. Another generic explanation for AEP’s

functionality is M2M middleware.

CDP, as we wrote above, is a service portal, at the first

hand. This portal should cover billing and policy control,

bearer service, service ordering and subscription, SIM-cards

management, etc.

We should note, that ETSI [7] suggests, practically, the

similar sub-division (Figure 1)

Figure 1. M2M ETSI [7]

Here M2M Device & Gateway Domain is an analogue of

CDP, and M2M Network Domain is an analogue of AEP.

III. CONNECTED DEVICE PLATFORMS

Let us see the typical functionality for CDP.

There are three main tasks:

• Connectivity management

• Subscription management

• OSS/BSS

CDP should allow the automation of the business processes

between the operator and enterprises. The typical example is

Ericsson DCP [8]. It is a secure portal offering businesses a

comprehensive suite of tools to manage connected devices

across their operations.

Typically, device management should control M2M devices

in the real time and usually cover the following areas:

• Centralized Control for the devices. It should allow

customers to edit configurations, update firmware,

download software and monitor the status and

location of user’s remote assets via a web browser.

• Groups Control for the devices. Customers should

be able to group (organize) devices in order to

perform various business tasks or in order to

simplify the network.

• Scheduled Operations. It should automate tasks,

such as firmware updates, reboots, polling,

uploading, etc. The scheduler executes scripts on a

one-time or recurring basis.

• Alarms and Notifications. This functionality lets

receive immediate notification when a device enters

a particular state and take corrective action. Note,

that it can cover geo-fence applications too [9].

• Carrier Subscription Management. This

functionality lets, for example, activate or

deactivate cellular lines and monitor data usage

The typical example for the CDP is Etherios Device

Cloud [10]. Figure 2 illustrates the typical M2M

dashboard from Bell M2M [11]

Figure 2. M2M dashboard [10]

CDP lets connect any device to Device Cloud. The

connecting software should be available for the different

platforms (e.g., Android, Java SE/ME, etc.).

One of the features, usually supported by CDP, is two-

way messaging for full cloud-to-device messaging and

control. Device management and troubleshooting tools from

CDP should include configuration edits, firmware updates

and device reboots [12].

IV. APPLICATIONS ENABLEMENT PLATFORMS

According to ABI Research [13], application enablement

platforms (AEPs) enable quicker and less expensive

application development as well as granular remote device

management for developers and solution providers as they

consider the optimal approach for building and deploying

their M2M solutions.

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 2, no. 8, 2014

 31

For example, Axeda AEP (Figure 3):

Figure 3. Axeda

It includes:

IoT Connectivity tools. They let connect any product

using any device, over any communication channel for any

application.

Scalable and Secure Data Management. It lets manage,

process, and store millions of daily transactions as well as

users and device groups in an intuitive and completely

secure environment.

Fast Application Development tools. Axeda provides

powerful development tools and flexible APIs accelerate

custom application development. So, the boundary between

AEP and ADP is not so strong.

Simplified Enterprise Systems Integration. Axeda

provides standards-based integration framework accelerates

integration between the Axeda Platform and enterprise

systems, including ERP, CRM, billing, and data warehouses.

Data management, on the first hand, provides a Data

Model. It is designed for storing M2M data and managing

device and asset types, M2M data items, locations, alarms,

and files. Connected asset attributes include default

attributes such as organization, location, contacts, groups,

and conditions. Models are easily enhanced with extended

database objects to accommodate customization. Note, that

this area is a subject for many academic papers (M2M

ontology [15][16]), but it looks like de-facto (vendors

initiated) standards will prevail.

Data management supports a flexible rules engine for

processing incoming data, responding to events and alarms,

and triggering actions on the Axeda Platform. Note, that

rules engine includes an intuitive UI too. It lets rapidly

implement sophisticated rules with thresholds and

expressions.

We should mention two main elements here: orientation to

mashups and fast prototyping. Developers can extend the

rules engine using Axeda’s Scripting API to “mash up”

platform capabilities with other cloud-based services.

Another interesting moment is the distributed engine.

Developers can run expression rules on the Axeda Platform

or threshold rules remotely and natively on the edge device

to reduce communication costs. Platform’s rule timers allow

developers to create a timer to execute rules on a schedule.

The scheduler could be customized too.

The middleware (processing engine) handles device data,

files, alarms, events, locations, geo-fences and all processing

for the platform. It includes extensive built-in security

capabilities to manage, users, roles, user groups, and device

groups. A configuration console enables you to manage rules

and model definitions, asset grouping, notifications, alarms,

user groups, and permissions.

As per developers API many implementations follow to

Web Services model. At the same time, we should mention

the shift towards REST API and more developers-friendly

formats: JSON (JSONP) vs. XML [17].

Another hot trend is build-in statistical processing. This

approach correlates with the common interest to big data.

But it could have the specific for M2M applications. Real

time data flow processing is more preferable for M2M. So,

we think that stream processing should prevail in big data

solutions for M2M [18].

V. APPLICATION DEVELOPMENT PLATFORMS

Figure 4 illustrates ETSI-compatible software

development platform [19]. Service-oriented architecture

should be platform-agnostic and provide a smooth binding

with HyperText Transfer Protocol (HTTP) and Constrained

Application Protocol (CoAP).

A RESTful architecture is usually based on some

hierarchical resource tree. Here we should mention again the

efforts in M2M ontology and repeat again, that most vendors

follow to the own solutions. Note that constrained M2M

devices present the biggest challenge for the developers. So,

ADP should support a RESTFul and lightweight device

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 2, no. 8, 2014

 32

management approach via M2M Gateways that cater to

M2M requirements from constrained M2M Devices.

The same is true for resource manipulations for a broad

range of M2M Devices, especially constrained M2M

Devices.

Figure 4. Software Development Platform InterDigital

Classically, RESTful architecture is based on a

hierarchical resource tree and standard resource

manipulation methods, including so called CRUD group:

CREATE/RETRIEVE/UPDATE/DELETE.

RESTful architecture is stateless and based on

Client/Server model. The CRUD group presents the uniform

interfaces. Requests and responses in this client/server

model are built around the transfer of representations of

resources. Each resource can have “unique address”,

“attributes”, and “sub-resources”. Traditionally, CRUD

methods could be extended with one additional function –

Subscription.

Note, that in the unified model, nodes in resource tree to

present not only sensors and devices. Mobile users, groups

of users, access rights, etc. are also “nodes”. As per ETSI

requirements, we have several points related to the access

rights [20]:

- A M2M device should be able to register its capability

information (e.g. access technology, its serial number, its

accessible address, allowed user list, etc.) to the M2M

System.

- M2M devices and M2M gateways should be able to

perform access control that checks the access right of the

end-user.

- M2M devices should be alternatively able to perform

the access control of M2M devices.

Traditionally (as it is borrowed from telecom), ADP could

provide a special functionality for billing. In the terms of

IMS telecom architecture, M2M server is so called Service

Capability Server (SCS). With a configurable charging

architecture, the Service Capability Server (SCS) (e.g., an

M2M Server) can access charging records generated within

3GPP networks as well as charging functions within the

3GPP network can access and leverage charging records

generated within the SCS [21].

The unified web-based API (SDK) requires, obviously,

some intermediate nodes (proxies) for legacy M2M devices.

It is required by ETSI model. For example, Figure 5

illustrates the common architecture [21]:

Figure 5. M2M internetworking

The central node in Figure 5 is Inter-Networking Proxy

for legacy devices.

On the one hand, for the end developer, everything looks

pretty transparent and simple. It is yet another REST API,

where ADP (AEP) leverages the details. On the other hand,

concerns for the efficiency will result, in our opinion, to the

attacks on the above described model. We see, at least, two

directions for changes. The figure 6 describes data model for

FI-WARE project.

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 2, no. 8, 2014

 33

Figure 6. FI-WARE data model

It is a much-more spaghetti-like model with the different

interfaces.

The second direction for changes (by our opinion) is the

cloud based model itself. Actually, cloud based access to the

devices (sensors) has got own weaknesses. Firstly, it can

face security concerns. Secondly, it could sometimes be

more costly than direct access to M2M (IoT) devices. And

sometimes the development for cloudless system could be

faster too. Just because any cloud-based solution is always

some generalized model and it may lose the convenience

details, comparing with the libraries, especially oriented to

the particular device (class of devices). So, it could be faster

in terms of convenience for the developers, at the first hand.

The typical example is Bluetooth Low Energy. As per

current model from Apple, iBeacons (BLE devices) do not

assume any cloud. End-user devices should obtain the data

(advertisement) right from beacons. And this model (for

iBeacons only, of course) is faster to develop with than, for

example, FI-WARE.

As per our opinion, it is the future of M2M development

tools. We think that unified toolbox will be very difficult to

maintain – think about creating support for every new

device. We think that devices will provide partial APIs and

M2M “frameworks” will combine them. That is why we

wrote about micro-services at the beginning.

V. CONCLUSION

In this paper, we describe the current state of M2M

platforms. At this moment we have a system with the

reasonable, logical sub-division of the implemented

functions. At the same time, we think that the high diversity

in the devices (sensors) used in M2M will change this

picture in the nearest time. We predict that instead of the

unified systems developers will deal with micro-services

oriented to the particular devices (classes of devices). |So,

the true developers-oriented stack for M2M is yet to be

created.

REFERENCES

[1] Brazell, J. B., Donoho, L., Dexheimer, J., Hanneman, R., & Langdon,

G. (2013). M2M: the wireless revolution.

[2] Namiot, D., & Sneps-Sneppe, M. (2014). On M2M Software.

International Journal of Open Information Technologies, 2(6), 29-36.

[3] Schneps-Schneppe, M., Namiot, D., Maximenko, A., & Malov, D.

(2012, October). Wired Smart Home: energy metering, security, and

emergency issues. In Ultra Modern Telecommunications and Control

Systems and Workshops (ICUMT), 2012 4th International Congress

on (pp. 405-410). IEEE.

[4] Sneps-Sneppe, M., & Namiot, D. (2012, April). About M2M

standards and their possible extensions. In Future Internet

Communications (BCFIC), 2012 2nd Baltic Congress on (pp. 187-

193). IEEE.

[5] Blum, N., Boldea, I., Magedanz, T., Staiger, U., & Stein, H. (2009,

July). A service broker providing real-time telecommunications

services for 3rd party services. In Computer Software and

Applications Conference, 2009. COMPSAC'09. 33rd Annual IEEE

International (Vol. 2, pp. 85-91). IEEE.

[6] Cackovic, V., & Popovic, Z. (2012, September). Device Connection

Platform for M2M communication. In Software, Telecommunications

and Computer Networks (SoftCOM), 2012 20th International

Conference on (pp. 1-7). IEEE.

[7] “ETSI Machine-to-Machine Communications info and drafts”

http://docbox.etsi.org/M2M/Open/ Retrieved: Jul, 2014.

[8] Ericsson DCP http://www.ericsson.com/ourportfolio/products/device-

connection-platform Retrieved: Jul, 2014

[9] Namiot, D. (2013). GeoFence services. International Journal of Open

Information Technologies, 1(9), 30-33.

[10] Mazhelis, O., & Tyrvainen, P. (2014, March). A framework for

evaluating Internet-of-Things platforms: Application provider

viewpoint. In Internet of Things (WF-IoT), 2014 IEEE World Forum

on (pp. 147-152). IEEE.

[11] Bell M2M http://mobilebusiness.bell.ca/industries-and-

solutions/machine-to-machine/ Retrieved: Jul, 2014

[12] Etherios http://www.etherios.com/products/devicecloud/ Retrieved:

Jul, 2014

[13] ABI Research https://www.abiresearch.com/market-

research/product/1005785-m2m-software-platforms/ Retrieved: Jul,

2014

[14] Castro, M., Jara, A. J., & Skarmeta, A. F. (2012, July). An analysis of

M2M platforms: challenges and opportunities for the Internet of

Things. In Innovative Mobile and Internet Services in Ubiquitous

Computing (IMIS), 2012 Sixth International Conference on (pp. 757-

762). IEEE.

[15] Chen, M., & Shen, B. (2011, October). A semantic unification

approach for M2M applications based on ontology. In Wireless and

Mobile Computing, Networking and Communications (WiMob),

2011 IEEE 7th International Conference on (pp. 265-271). IEEE.

[16] Gronbek, I., & Biswas, P. K. (2009, October). Ontology-based

abstractions for M2M virtual nodes and topologies. In Ultra Modern

Telecommunications & Workshops, 2009. ICUMT'09. International

Conference on (pp. 1-8). IEEE.

[17] Sneps-Sneppe, M., & Namiot, D. (2012). M2M Applications and

Open API: What Could Be Next?. In Internet of Things, Smart

Spaces, and Next Generation Networking (pp. 429-439). Springer

Berlin Heidelberg.

[18] Neumeyer, L., Robbins, B., Nair, A., & Kesari, A. (2010, December).

S4: Distributed stream computing platform. In Data Mining

Workshops (ICDMW), 2010 IEEE International Conference on (pp.

170-177). IEEE.

[19] Lu, G., Seed, D., Starsinic, M., Wang, C., & Russell, P. (2012, April).

Enabling smart grid with ETSI M2M standards. In Wireless

Communications and Networking Conference Workshops

(WCNCW), 2012 IEEE (pp. 148-153). IEEE.

[20] Wu, G., Talwar, S., Johnsson, K., Himayat, N., & Johnson, K. D.

(2011). M2M: From mobile to embedded internet. Communications

Magazine, IEEE, 49(4), 36-43.

[21] InterDigital http://www.interdigital.com/wp-

content/uploads/2012/10/InterDigital-M2M-white-

paper_Oct2012.pdf Retrieved: Jul, 2014-07-14

[22] Namiot, D., & Schneps-Schneppe, M. (2013). Smart Cities Software

from the developer's point of view. arXiv preprint arXiv:1303.7115.

