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Abstract— Multi-objective optimization design recently has 

attracted great attention of the researchers in solving 
engineering problems that have conflicting objectives. Although 
several control specifications which are often irreconcilable can 
be considered in the single objective function, choosing the 
appropriate weighting functions are another challenge faced by 
control designers. In this paper, a new Model Predictive 
Control scheme based on the multi-objective optimization is 
proposed in which at each sampling time, the MPC control 
action is chosen automatically among the set of Pareto optimal 
solutions based on the Nash Bargaining Solution from Game 
Theory. This method is independent of the system type. It is 
applied on the nonlinear systems along with TP transformation 
to design multi-objective MPC. As a result, LMIs and convex 
optimization techniques can be utilized to provide an on-line 
solution for the multi-objective MPC design. The proposed 
method is executed on a complex nonlinear system. It is shown 
through the examples that the proposed method can execute 
approvingly compared to other methods in the literature of the 
control systems. 
 

Keywords— Linear programming (LP), Model predictive 
control (MPC), real-time control, Nash bargaining, Uncertain 
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I. INTRODUCTION 
Recently, many control designers have been working on 
design methods which satisfy multiple design specifications 
called multi-objective control design [15]. Multi-objective 
optimization which is also called multi-criteria optimization 
or vector optimization has been defined as the finding of the 
decision variables vector satisfying constraints to give 
optimal values to all objective functions. One of the methods 
of solving a multi-objective optimization problem is to 
reduce the optimization dimension.  
This method is based on using weighted quadratic sum of the 
objective functions rather than solving them simultaneously. 
Since conflict exists between them, choosing appropriate 
weighting factor in this method is inherently difficult and 
could be regarded as a subjective design concept. Moreover, 
the trade-offs existed between some objectives cannot be 
explored and it would be. 
Therefore, impossible to choose an appropriate optimum 
design reflecting the compromise of the designer's choice 
concerning the absolute values of objective functions. 
Therefore, this problem can be formulated as a multi-
objective optimization problem so that the trade-offs 
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between objectives can be found consequently. The results 
of multi-objective optimization is a set of optimal solutions 
which is called Pareto Frontier [7].  
In many practical optimization problems, only one among 
solutions belonging to the set of Pareto should be selected as 
the final solution. For example, in MPC design, one control 
action can be selected for the current sampling time. García 
et al. used evolutionary algorithms to find Pareto frontier 
and a fuzzy inference system as an expert decision maker to 
select the best solution of the Pareto set.  
This method would be computationally intractable, because 
all the Pareto solutions should be obtained at each time step 
and then a trade-off point is selected using decision maker.  
 

 
Figure 1: The Nash bargaining solution 

One of the useful methods to find the best solution is based 
on the Bargaining concepts which has its origin in two 
papers by Nash [7]. Base on the proposed method by Nash, 
called Nash Bargaining Solution, the trade-off point is the 
point of Pareto feasible set, S, at which the product of utility 
gains from Threat point is maximal [7]. Threat or 
disagreement point,  , is a point in which 
players (objectives) can expect to receive other better 
outcomes than the one which becomes effective when they 
do not cooperate or negotiations break down. According to 
the Nash bargaining solution, the trade-off point is        

 
where  is the objective function, and  
 means dominates . Figure 1 illustrates the concept of 
Nash bargaining solution geometrically. The Nash 
bargaining solution is the point on the edge of S and a part 
of the Pareto frontier which yields the largest 
rectangle  [7]. This point can be obtained by a 
few Pareto points; therefore, this method can be beneficial to 
MPC design. We use this method for the proposed MPC 
design. The methodology of the controller design using Nash 
Bargaining Solution is given in this paper. 

II. PROBLEM FORMULATION 
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Consider the following discrete-time LPV system of the 
form:  

              (1) 

where  is the state vector,  is the control 
input and  is the measured output. Also, the input 
and output are subjected to the following constraints:  

     
                            (2) 

The time-varying system matrix is defined as follows:   

     (3) 

This matrix belongs to the convex hall -  
    (4), including 

the convex combination of (L) LTI models. 
Using the LPV model, the control signal is derived by 
minimizing an upper bound of the worst-case infinite 
horizon quadratic cost at sampling time  

     (5) 

where  and  are weighting matrices which 
should be designed by the designer to make a trade-off 
between the response performance, and control input cost. 
Therefore, the performance of the control system depends on 
these matrices. In the following sections, a method will be 
proposed in which the designer does not need to specify 
these matrices. 
 

III. MULTI-OBJECTIVE MPC DESIGN 

 
Our goal is to find a method which helps the designer to 
solve the multi-objective MPC problems without choosing 
the weighting matrices. In order to obtain the control signal 
at each sampling time, the following optimization problem 
should be solved at each sampling time 
 

                                              

subject to 

                                           

 

               (6) 

 

                                            

 

       

 

where, (  is the number vertices). And,  
and  are the upper bound for input and output, 
respectively. 
The LMI control design method in (6) can be extended to 
the multi-objective optimization problem. Since, the 
performance of the control system depends on the weighting 
matrices, the following method is proposed to tune these 
matrices based on the Nash bargaining solution at each 
sampling time. 
According to the Pareto front properties, since the objective 
functions in (4) are convex, the cost function J can be 
defined as a linear combination of those convex objective 
functions by specifying the weighting matrices, Q and R as 
follows  

                  (7) 
      (8) 

where  means the diagonal matrix and 
is the tuning parameter vector obtained by 

Nash bargaining solution at each sampling time. Therefore, 
the designer does not need to design the weighting matrices, 
since they are automatically tuned at each sampling time. 
In order to find the Nash equilibrium point, first of all, the 
threat or disagreement point must be found. The threat point 
can be obtained by solving the optimization problem at 

for   and , that is, the 
optimization problem is solved for each objective function 
separately. Then different points will be obtained. Each of 
which has the best value for the corresponding objective 
function and they may have the worse value for other 
objective functions. Finally, one single point among them is 
obtained, which is dominated by other points, and it is 
considered as a threat or disagreement point. Now, the multi-
objective MPC can be designed using Nash equilibrium 
point. 
The design steps of the multi-objective MPC are given as 
follows:  

Step 1: at   

1. for  to L  
2.   
3. ;  
4. find   
5. end  

Step 2: find threat point  

6. for  to L  
7.    
8. end  

Step 3: for  to End do  

9. set:    
10. compute:  
11. for  to L verify  
12. if    

13. calculate:   

14. else find    which   
15. update:  
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16. return to 10  
17. end  
18. if    
19. terminate  
20. set:  
21.   
22. else  
23. return to 10  
24. end 
 
Note: numbers 0.01 and 0.8 in the above-mentioned design 
procedure are chosen arbitrary. 

IV. APPLICATION ON TWO MASS-SPRING MODEL  
 
To illustrate the effectiveness of the proposed MPC method, 
the system consisting of a two mass-spring model with a 
time-varying nonlinear spring coefficient, is considered and 
shown in Figure 1. 

 
Figure 2: Two mass spring system 

 

A. Problem Formulation:  
 
The discrete-time state-space model of the two-mass-spring 
system (obtained from the continuous time model using a 
first-order Euler approximation with sampling time 

) is given as follows:  

       (9) 

where  and  are two masses and  is the spring 
constant. The state vector at each sampling time,  , 
includes the position of the masses ,  and their 
velocities, ,  . In this example the masses are constant 

 and , while spring constant varies with time 
according to the following equation:   

       (10) 

It can be seen that . According to [6], the 
weighting functions  can be defined as  
and  ,  which satisfy convex hull condition 
in (4). For this system, two vertices based on the maximum 
and minimum values of the spring constant can be obtained 
as follows:  

         (11) 

         (12) 

        (13) 

The objective of the control design is to steer the two masses 
from the initial condition  to the origin. The 
control system must satisfy the input and output (positions of 
the masses) constraints,  and  , 
respectively. Since, the constraints are considered only for 
the positions, the matrix  is 
independent of  and is kept the same for both vertices.  
 

B. Simulation Results:  
 
Figure.3 illustrates the obtained simulation results. It is 
obvious that the system is asymptotically stable, and the 
states are steered to the origin efficiently. Figure.4 shows the 
results from [4], [5], and [6]. It is noticed that the proposed 
MPC method steers the masses to the origin significantly 
faster compared with the other methods. According to the 
obtained results, the settling time is about , while it is 
about  in [6]. 
The control signal of the proposed MPC method is shown in 
Figure.5a Also, Figure.5b illustrates the control signal 
behavior of the methods in [4, 5, 6]. It can be seen that both 
input and output responses satisfied the considered 
constraints. Although the results show that the proposed 
MPC method has the greater control signal magnitude than 
the other methods do, it does not violate the constraint; 
therefore, the results are acceptable. It shows the advantage 
of the proposed method. At the beginning of the response, 
the state error is large. Therefore, using the Nash bargaining 
solution, the bigger states weights are chosen while the 
weight of the control input is small. This automatic tuning 
procedure is carried out within the simulation at each 
sampling interval to find the variable weighting matrices as 

 , and  . On the contrary, 
the other methods use the fixed weighting matrices as 

 , and . 
Figure.6 shows the minimized upper bound on the worst-
case cost function in (6). It clearly shows that the proposed 
method obtains incomparably smaller upper bound at each 
sampling time (Figure.6a) in comparison with the other 
methods (Figure.6b). As a result, the proposed controller is 
closer to the optimal solution that may be obtained for the 
unconstrained optimal control method (global minimal 
solution).  
It is evident that applying the proposed MPC method on the 
considered LPV model achieve significant performance 
improvements compared with the methods presented in [4], 
[5], [6].  
To generalize the application of the proposed method, in the 
following section a highly nonlinear system is considered 
and the proposed method is applied to that. Finally, the 
obtained results are compared with proposed method in 
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[7].

 
Figure 3: Time response of the state variables. 

 
Figure 4: The state responses of the results from [4] 

(dashed line), [5] (gray line), and [6] (solid black line) 

 

 
Figure 5: (a) Control signal of the proposed method, (b) [4] 

(dashed line), [5] (gray line), and [6] (solid black line). 
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Figure 6: Upper bound on the considered cost functions, (a) 
the proposed method, (b) [4] (dashed line), [5] (gray line), 

and [6] (solid black line 

V. CONCLUSION 
This paper presents a novel methodology to solve the 
problem of multi-objective model predictive control design. 
This method is proposed for linear parameter-varying 
systems. Multi-objective functions instead of single 
objective function are considered at each sampling time. 
This method leads to finding the trade-off between the 
objective functions. In order to solve the multi-objective 
optimization problem at each sampling time, the game 
theory and Nash bargaining solution are used to find the 
trade-off point. The Nash bargaining solution can find the 
trade-off point in game theories and can tune the weighting 
factors properly at each sampling time. The multi-objective 
optimization results are the solutions to a convex 
optimization problem based on linear matrix inequalities that 

are solved repeatedly at each sampling instant. The 
simulation results show the effectiveness of the proposed 
method that can be generally used for the control system 
design with more than one objective functions. 
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