
International Journal of Open Information Technologies ISSN: 2307-8162 vol. 10, no. 3, 2022

Abstract—The construction of objects without validating the

values of their fields leads to the need to introduce additional
checks into the program text. The existing approaches (the
Builder pattern and its modification, methods for checking the
input parameters of constructors and methods) do not
completely solve this problem. We introduce a design pattern
for reliable object construction, which consists in adding two
subsidiary classes to the original data-class. The first
subsidiary class is a subclass of the data-class and has a factory
method for creating objects. The parameter of this method is
an object of the validator-class. Factory method is the only way
to create objects. If the field values are invalid, then a default
object (the Null Object pattern) is returned. The second
subsidiary class is a class that validate the field values of an
object of the original data-class. We demonstrate an example of
reliable object construction. The advantages of the design
pattern are separation of the object from its construction and
parameter validation, reduction of duplication of program
fragments, guaranteed object creation, no use of exceptions,
null values, and nested classes.

Keywords—Design patterns, object construction, object-
oriented programming, reliable programming.

I. INTRODUCTION
Reliable programming is a set of programming techniques
that prevent unpredictable program behavior. "The
reliability of a programming system is not only determined
by the number of errors to be expected, but also by its
behavior in error situations" [1].

The set of techniques includes:
– validation of input data;
– checking the result of the call to the external system;
– data protection from accidental changes.
Reliable programming is the foundation for defensive

programming. Defensive programming is a set of
programming techniques that prevent unauthorized use
vulnerabilities in a program and eliminate the effects of
malware.

II. APPROACHES TO OBJECT CONSTRUCTION
There are various approaches to object construction. Some
of them can be used to construct objects reliably.

Originally the Builder pattern was as follows [2]. The 𝐵
object-builder creates an object 𝐶, sets its parameters and

Manuscript received January 15, 2022.
A. Prutzkow is with the Utkin Ryazan State Radio Engineering

University, 390005, Gagarin str., 59/1, Ryazan, Russia, with Pavlov Ryazan
State Medical University, 390026, Vysokovol’tnaja str., 9, Ryazan, Russia,
and with Yesenin Ryazan State University, 390000, Svoboda str., 46,
Ryazan, Russia (e-mail: mail@prutzkow.com).

returns as a result of one of its methods. Parameters mean
the values of the 𝐶 object fields or a set of more objects
included in the 𝐶 composite object.

The advantages of this pattern are:
(b1+) providing an uniform interface for constructing an

object;
(b2+) separation of the object and its construction;
(b3+) the ability to adapt the construction of an object for

a specific task.
The main disadvantage of this pattern is (b1–) the

presence of a rigid connection between the 𝐵 object-builder
and the 𝐶 object [3], [4] and duplication of program
fragments. This leads to the fact that changes made to the 𝐶
object class often require changes to the 𝐵 object class.

J. Bloch proposed a modification of the Builder pattern
[5] for the Java programming language, which is as follows.
A nested class is added to the class whose the 𝐶 object you
want to construct. The object of the nested class is the 𝐵
object-builder. A feature of nested classes in the Java
language is the ability to access static and non-static (after
object creation) fields, constructors, and methods of an outer
class, including those with the private specifier [6]. The 𝐶
object class constructors have the private specifier, so the 𝐶
object is constructed by the 𝐵 object method. An example of
the implementation of this pattern can be found in [7].

The advantages of this modification of the Builder pattern
are [5]:

(m1+) the only way to create objects through the method
of the nested class;

(m2+) alternative to constructors with various
combinations of parameters (telescopic constructors);

(m3+) the ability to use in the object hierarchy.
The disadvantages of the modification are:
(m1–) disadvantage (b1–);
(m2–) nested classes make it harder to understand outer

classes.

III. INPUT VALIDATION STEPS
All data inputting the program is considered unverified.

Input validation includes the following steps [7]:
(1) Checking the data source. Before you start actually

checking the data, you need to make sure that the data
comes from a trusted source. A trusted source can be
identified by an IP address or a pre-issued identification
number.

(2) Checking the size of the data. Before doing a deep
data check, it is necessary to check the length of the
received data. For example, the received data of the phone
number can exceed 1 gigabyte, which exceeds all reasonable
limits.

Reliable Object Construction
in Object-oriented Programming

Alexander Prutzkow

48

https://translate.googleusercontent.com/translate_f%23_Ref61942356
https://translate.googleusercontent.com/translate_f%23_Ref91862341
https://translate.googleusercontent.com/translate_f%23_Ref91864347
https://translate.googleusercontent.com/translate_f%23_Ref91776613
https://translate.googleusercontent.com/translate_f%23_Ref91860838
https://translate.googleusercontent.com/translate_f%23_Ref91862558
https://translate.googleusercontent.com/translate_f%23_Ref91776613

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 10, no. 3, 2022

(3) Checking the lexical content of the data. If the size of
the data is within a certain range, then it is further checked
whether the data consists of valid characters. For example, a
phone number contains only numbers.

(4) Data syntax checking consists in making sure that the
data matches a specific pattern. For example, a telephone
number is a sequence of a country code, a region or provider
code, and a subscriber number.

(5) Checking the semantics of data consists in checking
the existence or validity of such data. For example, is the
phone number provided to the subscriber or is it blocked.

Therefore, when creating objects, it is required to check
the parameters of their constructors and / or methods.

IV. APPROACHES TO VALIDATING CONSTRUCTOR
AND METHOD PARAMETERS

Validate class [8] from the org.apache.commons.lang3
package has methods for validating parameters: for a null
value, for matching a regular expression, for whether a
condition is true (see, for example [7]). If the validation
fails, an exception is thrown.

Starting with Java EE version 6, it introduces the Bean
Validation technology [9]. Constraints are described by

special annotations of classes, fields, methods and their
parameters. After creating an object of a class with
annotations, it is passed as a parameter to the validation
method. The check results in many constraint violations.

V. PURPOSE OF THE STUDY
The existing approaches to constructing objects and
validating parameters have disadvantages. So purpose of the
study is to develop a reliable object construction pattern
with parameter validation of constructors and methods that
eliminates or mitigates these disadvantages.

VI. RELIABLE OBJECT CONSTRUCTION PATTERN
We propose the following design pattern for reliable object
construction.

Let there be a 𝐶 data-class (Listing 1). It needs to add
subsidiary classes without modifying the 𝐶 class so that all
of these classes together provide reliable 𝐶 object
construction. We use the approach proposed by J. Bloch,
with a constructor whose parameter is an object to construct
an object of the class.

Listing 1. Original data-class example
1 public class DataClass {
2 private int var1;
3 private String var2;
4
5 public DataClass() { }
6
7 public DataClass(int var1, String var2) {
8 this.var1 = var1;
9 this.var2 = var2;
10 }
11
12 public final int getVar1() {
13 return this.var1;
14 }
15
16 public final String getVar2() {
17 return this.var2;
18 }
19
20 @Override
21 public String toString() {
22 String className = this.getClass().getSimpleName();
23 return String.format("%s [%d, %s]", className, this.var1, this.var2);
24 }
25 }

↳
Two subsidiary classes are needed to construct objects

reliably:
𝐹: data-class with a factory method – subclass of the 𝐶

class (Listing 2);
𝑉: class for validating field values of the 𝐶 class object

(Listing 3).
The 𝐹 data-class must contain:
(f1) Constant field with a Null Object [10] (Listing 2,

line 2).

(f2) Overridden superclass constructors with private
specifier (lines 4, 6-8).

(f3) Constructor creating an object using a superclass
object (lines 10-12).

(f4) A static method that creates an object (factory
method) with the 𝑉 validator-class (lines 14-24).

49

https://translate.googleusercontent.com/translate_f%23_Ref34676248
https://translate.googleusercontent.com/translate_f%23_Ref91962141
https://translate.googleusercontent.com/translate_f%23_Ref91962150
https://translate.googleusercontent.com/translate_f%23_Ref92200524
https://translate.googleusercontent.com/translate_f%23_Ref91962141

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 10, no. 3, 2022

Listing 2 . The 𝐹 data-class example with factory method

1 public class VerifiedDataClass extends DataClass {
2 public static final VerifiedDataClass DEFAULT = new VerifiedDataClass();
3
4 private VerifiedDataClass() { }
5
6 private VerifiedDataClass(int var1, String var2) {
7 super(var1, var2);
8 }
9
10 private VerifiedDataClass(DataClass dataClass) {
11 super(dataClass.getVar1(), dataClass.getVar2());
12 }
13
14 public static VerifiedDataClass createReliably(DataClassValidator dataClassValidator) {
15 boolean isValid = dataClassValidator.isValid();
16 if (isValid) {
17 DataClass dataClass = dataClassValidator.getDataClass();
18 VerifiedDataClass verifiedDataClass =
19 new VerifiedDataClass(dataClass);
20 return verifiedDataClass;
21 } else {
22 return VerifiedDataClass.DEFAULT;
23 }
24 }
25 }

↳
The 𝑉 validator-class must include:
(v1) The 𝐶 class field and other fields required for

validation (Listing 3, line 2).
(v2) Constructor with the validated object of the 𝐶 class

as a parameter and, if necessary, with subsidiary parameters
(lines 6-8).

(v3) Method for validating class constructor parameters
(lines 10-16).

(v4) Method to get the value of the 𝐶 class field (lines 26-
28).

Consider the purpose of the parts of the 𝐹 data-class.
(f1) Used in place of the null value or throwing an

exception. Is of the same type as the 𝐹 data-class.
(f2) Hide superclass constructors.
(f3) Copies the field values of the 𝐶 superclass object to

the fields of the 𝐹 subclass object. Has the private specifier
so that only methods of the class can call this constructor.

(f4) The only way to create an object of the 𝐹 class from
the outside, since the rest of the methods are hidden (f2, f3).
Object construction is impossible without validating the
parameters of its constructor. If the validation fails, then the
Null Object (f1) is returned.

The purpose of the parts of the 𝑉 validator-class of object
field values is as follows.

(v1) Stores the values to be validated and the values
needed for the validation, such as the limits of a range of
valid values.

(v2) Initializes the fields of the object of the 𝑉 validator-
class.

(v3) The main method of the 𝑉 validator-class. Used
when creating an object of the 𝐹 class.

(v4) Needed to retrieve the values of the fields of the 𝐶

class object in the subsequent to construct the 𝐹 class object.
The considered classes are used as follows (Listing 4,

lines 1-4). Line 6 will print the false value, because the
values of the class constructor parameters are valid. Line 7
will print the true value, because the object is an instance of
the VerifiedDataClass class (the 𝐹 class). The truth of the
last condition confirms that the object was created after
validating the parameters of its constructor.

VII. CONCLUSIONS
The features of the proposed design pattern for reliable
object construction are as follows.

(1) The object is constructed:
– the only way is by the factory method;
– with the obligatory participation of a validator-class

object;
– not using exceptions and null values;
– guaranteed; if errors are detected for parameters, a Null

Object will be returned.
(2) A simple condition for validating the construction of

an object without errors: it is necessary to compare the
created object with a Null Object.

(3) The original data-class does not need to be modified.
(4) The object is separated from its construction.
(5) The original data-class may be immutable. Its getter

methods are not used.
(6) The original data-class can be a superclass or a

subclass.
(7) The 𝐹 subclass of an object is a confirmation that the

values of its fields have been validated.

50

https://translate.googleusercontent.com/translate_f%23_Ref91962150

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 10, no. 3, 2022

Listing 3. The 𝑉 class example for validating field values of the 𝐶 class object

1 public class DataClassValidator {
2 private DataClass dataClass;
3
4 private DataClassValidator() { }
5
6 public DataClassValidator(DataClass dataClass) {
7 this.dataClass = dataClass;
8 }
9
10 public boolean isValid() {
11 boolean isDataClassValid = true;
12 isDataClassValid = isDataClassValid //
13 && this.isVar1Valid() //
14 && this.isVar2Valid();
15 return isDataClassValid;
16 }
17
18 private boolean isVar1Valid() {
19 return this.dataClass.getVar1() != 0;
20 }
21
22 private boolean isVar2Valid() {
23 return this.dataClass.getVar2() != null;
24 }
25
26 public final DataClass getDataClass() {
27 return this.dataClass;
28 }
29 }

↳
Listing 4. An example of using the reliable object construction pattern

1 DataClass dataClassObject = new DataClass(1, "Text");
2 DataClassValidator dataClassValidator = new DataClassValidator(dataClassObject);
3 VerifiedDataClass verifiedDataClassObject = VerifiedDataClass
4 .createReliably(dataClassValidator);
5
6 System.out.println(verifiedDataClassObject == VerifiedDataClass.DEFAULT);
7 System.out.println(verifiedDataClassObject instanceof VerifiedDataClass);

↳
Degree of elimination of the disadvantages of existing

approaches:
(b1–) Not completely eliminated, but significantly.

Subsidiary classes 𝐹 and 𝑉 depend on the 𝐶 class weakly.
There is no duplication of class fragments. When changing
the fields of the 𝐶 class, you need to change the constructor
in the 𝐹 class (Listing 2, lines 10-12) and the parameter
validation method in the 𝑉 class (Listing 3, lines 10-16).

(m2–) Nested classes are not used.
The disadvantages of the proposed pattern are determined

by the lack of the "Factory Method" pattern [5]: factory
methods are difficult to distinguish from other static
methods (mitigating this disadvantage through naming is
also found in [5]).

The software project with the classes demonstrated in the
paper is available for free download from the Internet
resource of the author [11].

REFERENCES
[1] H. Gerstmann, H. Diel, and W. Witzel, “The reliability of

programming systems”. In C.E. Hackl (ed.) Programming

Methodology. IBM 1974. Lecture Notes in Computer Science, 1975,
no. 23. DOI: 10.1007/3-540-07131-8_23.

[2] E. Gamma, R. Helm, R. Johson, J. Vlissides, Design patterns:
Elements of reusable object-oriented software. Pearson Education,
1994.

[3] S. Stelting, O. Maassen, Applied java patterns. Sun Microsystems
Press, 2002.

[4] J. Hunt, Scala Design Patterns. Patterns for practical reuse and
design. Springer, 2013.

[5] J. Bloch, Effective java, 3rd ed. Addison-Wesley, 2018.
[6] H. Schildt, Java. The complete reference, 11th ed. McGrow-Hill

Publisher, 2019.
[7] D. Johnsson, D. Deogun, and D. Sawano, Secure by design. Manning,

2019.
[8] Validate (Apache Commons Lang 3.12.0 API)

Available: https://commons.apache.org/proper/commons-
lang/apidocs/org/apache/commons/lang3/Validate.html

[9] E. Jendrock, R. Cervera-Navarro, I. Evans, D. Gollapudi, K. Haase,
W. Markito, Ch. Srivathsa, The Java EE 7 tutorial, release 7 for Java
EE platform. Oracle, 2013.

[10] B. Woolf, “Null Object”. In R. Martin, D. Riehle, F. Buschmann
(eds.) Pattern Languages of Program Design, 1998, no. 3, pp. 5-18.

[11] A. Prutzkow, “Internet-resurs dlja razmeshchenija rezul'tatov
nauchnoj i obrazovatel'noj dejatel'nosti” [Internet-resource for
Scientific and Educational Work Result Publishing]. In Vestnik
Rjazanskogo gosudarstvennogo radiotekhnicheskogo universiteta,
2018, no.63, pp. 84-89. DOI: 10.21667/1995-4565-2018-63-1-84-89.
[In Rus]

51

	I. Introduction
	II. Approaches to object construction
	III. Input validation steps
	IV. Approaches to validating constructor and method parameters
	V. Purpose of the study
	VI. Reliable Object Construction Pattern
	VII. Conclusions
	References

