
International Journal of Open Information Technologies ISSN: 2307-8162 vol. 2, no. 6, 2014

21

Abstract—A new protocol for Single Sign-on for the Web is

proposed. The main goal of the introduction of this new

protocol is to combine the advantages of widespread protocols

OpenID and OAuth and to be free from features which we

regard as disadvantages of these protocols. Another problem

covered in the article: how a client web site can automatically

detect a provider web site where a user already has an account

to authenticate against. A special supplementary protocol is

proposed for this goal.

Keywords— OAAP, OAuth, OpenID, Single Sign-on.

I. INTRODUCTION

Single Sign-on methods are intensively developed in the

last decade in various areas of applications. On the World

Wide Web, a Single Sign-on approach becomes important in

connection with wide spreading of blogs, forums and social

networks.

The most widely used protocols for Single Sign-on for the

Web are OpenID [1] and OAuth [2]. These protocols have

slightly different functionality and use cases. OpenID

provides a user authentication only, whereas OAuth provides

also an access to an API of a provider site. This difference

and other ones are discussed in more details below.

An idea of a new protocol is to combine the advantages of

both mentioned protocols. At the same time, some features

of these protocols we regard as disadvantages, and we want

the new protocol to be free of these features.

Below we present the critics of existing protocols, the

goals of the new protocol and the requirements for it, as well

as describe procedures and features of the new protocol and

an experimental implementation of it. Our new protocol gets

a preliminary name of Open Authentication and

Authorization Protocol (OAAP).

Both OpenID and OAuth have no means to detect

provider sites where a user already has an account to

authenticate against. Users have to enter site identifiers

manually. Alternatively, a client site can allow a user to

select from a very limited list. We regard this as an annoying

problem which limits a use of Single Sign-on on the Web.

In the OAAP we consider a number of solutions for this

problem, which unite under a preliminary name of

“Backend”. We discuss these possible solutions below. One

of the solutions is already implemented within an

Manuscript received June 3, 2014.

Dmitry E. Gouriev is scientists in Faculty of Computational

Mathematics and Cybernetics of Lomonosov Moscow State University,

Moscow, Russia (email gouriev@oit.cmc.msu.ru).

Constantin L. Belemuk is student in Sevastopol Filial Branch of

Lomonosov Moscow State University, Sevastopol, Russia (email

xxxm1n0rxxx@mail.ru).

experimental implementation of OAAP. It has a form of a

supplementary protocol, which is preliminary named OAAP

Backend Protocol (OAAP BP). Potentially OAAP BP can be

used in conjunction with OpenID and OAuth as well as with

OAAP.

A work on OAAP, OAAP BP and other Backend

solutions should not be regarded as completed. In conclusion

of this article we discuss the directions of further works.

II. CRITICS OF EXISTING PROTOCOLS

The most widely used SSO protocols on the Web are

OpenID and OAuth.

With the OpenID protocol a user already registered at one

site (server site) can log into another site (client site),

without having to register and authenticate at the client site.

Authenticity of the user is provided by the server site.

OpenID is based on user identifiers called OpenID

identifiers.

The OAuth protocol provides the same as OpenID and

additionally can establish so called “access token” – a piece

of data which allows subsequent calls from the client site to

an API of the server site. One important requirement of

OAuth is that the client site must be registered with the

server site before OAuth transactions occur.

We regard the following features of these protocols as

disadvantages:

1) OpenID identifiers are generated by server sites and can

have a format which is difficult for users to remember

and deal with;

2) It is often difficult to find OpenID identifiers in a server

site;

3) An OpenID server site authenticates a user only and

does not provide any data (to be fair, an exchange of

additional data is allowed, but it is out of the scope of

the OpenID specification);

4) The OAuth protocol requires a client site to be

registered at a server site; a user cannot pass an

authentication using an arbitrary server site, if there is

no such preemptive registration;

5) Both OpenID and OAuth cannot detect server sites

where a user already has an account to authenticate

against.

We want our new protocol (OAAP) to be free of these

features.

The 4th feature is introduced in OAuth to limit an access

to an API of a server site to trusted client sites only, and, in

this way, to make a service more trusted by end users.

However, it limits a spread of OAuth. In our new protocol

(OAAP) we avoid this measure. Instead, we propose to

provide a more granular access control to functions of the

A New Protocol for Single Sign-on for the Web

Constantin L. Belemuk, Dmitry E. Gouriev

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 2, no. 6, 2014

22

API and to allow end users to manage these access rights.

III. GOALS AND REQUIREMENTS

The main idea of a design of the new protocol is to

combine the advantages and to be free from the

disadvantages of OpenID and OAuth protocols. Following

this idea, the new protocol must provide the following

functions:

1) Simple and fast authentication of users.

2) Simple and fast authorization of users.

3) An access to an API of a server site (like in OAuth,

optional).

The new protocol is proposed to have the following

features:

1) No identifiers.

2) No preemptive registration of a client site at a server

site.

3) A granular access control to API functions of a server

site. This control must be managed by an end user.

4) Automatic detection of server sites where a user already

has an account and granting the user an ability to select

a site to authenticate against from a list of these sites.

IV. THE OAAP

Here we present the main scenario of the OAAP protocol.

A complete specification of the protocol in published on the

Internet [3]. See also a sequence diagram of the protocol in

Figure 1.

1) The user presents the client site with a URL of a server

site which can authenticate the user. In this step it is

possible to use one of the functions called a “Backend”,

for instance, the OAAP BP protocol described below, to

detect a list of server sites where the user already has an

account. If the function is used and succeed, then the

user can select a server site to authenticate against from

the list. If no such function is used or it fails, a user is

to enter a URL manually.

2) The client site discovers a URL of the authorization

server, using an HTTP GET requests. The authorization

server is a part of the server site that handles an

authorization process. This discovery can be executed

by requesting of an XDRS document [4] from the server

site, just like in OpenID. However, the OAAP

specification additionally allows several more simple

ways. A URL of the authorization server can be

extracted from:

- A special HTTP header,

- An HTML code (using <meta> element),

- A file of a special name and location on the server

site (just like favicon.ico or robots.txt).

3) The client site and the server site create a shared secret

using the Diffie-Hellman algorithm. An HTTP GET

request is done by the client site for this purpose.

Аuthenticity of public keys used in the Diffie-Hellman

process is not proven in OAAP, so there is a possible

hole for a man-in-the-middle attack. However, a use of

the TLS transport [5] will prevent this attack. The

created shared secret is then used to authenticate

subsequent messages.

4) The client site redirects the user’s User-Agent program

to the authorization server. Here the user passes

authentication, authorization and confirms his

intentions. Like in OpenID and OAuth, the

authentication step is skipped if the server site detects

that the user already have a valid open session with the

server site. If an API is provided by the server site, the

authorization server allows user to select functions

which will be accessible in subsequent API requests. At

the protocol level an access to each individual API

function is granted or denied, however, in a user

interface the authorization server may combine

functions in reasonable groups.

5) The authorization server redirects user’s User-Agent

program to a URL at the client site to inform it about

authorization results.

6) If an API is provided by the server site, functions of the

API can be called in subsequent HTTP requests. Only

the functions allowed at step 4) can be accessed. The

OAAP protocol specifies HTTP message formats to

transmit a call and to receive a result of the call.

V. THE BACKEND

A preliminary name of “Backend” is used in this paper to

refer to functions which help to detect, in which server sites

a user already have an account to authenticate against.

A Backend could be thought as some kind of a storage or

a database, where:

1) Server sites store information that a specific user has an

account at a specific server site,

2) A client site can retrieve this information and present a

user with a reasonable list of server sites to authenticate

against, instead of presenting a fixed list of ‘most

popular’ server sites or forcing the user to enter an URL

manually.

Possible ways of implementation of the Backend are:

1) A centralized server,

2) A distributed server,

3) A browser plugin or an extension which is installed on

an end user’s computer and has access to its local

storage.

A centralized server is the simplest solution. However, it

has very low level of fault-tolerance. A distributed server is

more complex, and it is enough fault-tolerant. Both these

solutions can have a problem how to identify a user to

associate his data, depending on implementation.

All Backend solutions have a problem of potential

violation of user’s privacy. Suppose, an attacker can access

information about all accounts of a particular user and

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 2, no. 6, 2014

23

Figure 1. The OAAP sequence diagram.

Processing of errors and exceptions is not shown.

compare it with user’s registration information at the

attacker’s own site.

A solution based on browser plugin can be the safest in

regard to this problem. However, it is more difficult to

implement, because a special plugin or extension is required

for each type of popular web browser.

For now a protocol of a centralized server is specified and

implemented (see The OAAP BP below). We suppose that

all three approaches will be in use in the future.

VI. THE OAAP BP

The OAAP Backend Protocol (OAAP BP) is a protocol to

exchange information with a centralized Backend server.

The protocol specifies HTTP messages to store and retrieve

information about the existence or an account of a specific

user in a specific server site.

Every server site is supposed to store this information at

the centralized Backend server at a time when a user passes

authorization. Then, a client site can retrieve this

information and construct a reasonable list of server sites to

allow the user to select from.

The following data items are stored for each account:

1) A URL of the server site,

2) A proposed time of the end of a user’s session on the

server site,

3) A time when the information was stored by the OAAP

BP centralized server.

The OAAP BP requires that a list of server sites must be

sorted in such way that the sites with valid open sessions are

shown first and the sites with latest authorization time are

shown first.

The OAAP BP and its experimental implementation do

not use a storage on the centralized server. Instead, all data

items are placed in a user’s web browser as cookie files [6].

(Requests to the centralized server are nevertheless

necessary because this server only can access these cookie

files, in accordance with [6]).

A complete specification of OAAP BP is published on the

Internet [3].

24

VII. AN EXPERIMENTAL IMPLEMENTATION

An experimental implementation of the OAAP and OAAP

BP protocols has been created and published on the Internet.

One can find it here [3]. We invite anyone to evaluate it and

to provide a community with a feedback.

VIII. CONCLUSION

A new protocol OAAP for Single Sign-on for the Web is

proposed, specified and implemented. The protocol is

supposed to combine the advantages of OpenID and OAuth

protocols and to be free of the disadvantages of ones.

An additional protocol OAAP BP to detect in which

server sites a user already has an account is proposed,

specified and implemented. Potentially it can be used with

existing protocols OpenID and OAuth as well as with the

OAAP.

Specifications and implementations of both protocols are

in a very experimental stage and will be improved in the

future.

Other solutions to detect in which server sites a user

already has an account, called Backend solutions, were

discussed. These solutions are directions of further works.

We notice a problem of potential violation of user’s

privacy in connection with Backend solutions. A study of

this issue is also a direction of further work.

REFERENCES

[1] OpenID Authentication 2.0 – Final.. http://openid.net/specs/openid-

authentication-2_0.html Retrieved: Apr 24, 2014

[2] RFC 6749. D. Hardt. The OAuth 2.0 Authorization Framework

October 2012.

[3] The OAAP Home Page. http://oaap.oit.cmc.msu.ru/ Retrieved: May

13, 2014

[4] Extensible Resource Identifier (XRI) Resolution Version 2.0.

http://docs.oasis-open.org/xri/2.0/specs/xri-resolution-V2.0.html

Retrieved: Apr 24, 2014

[5] RFC 5246. T. Dierks, E. Rescorla. The Transport Layer Security

(TLS) Protocol Version 1.2. August 2008.

[6] RFC 6265. A. Barth. HTTP State Management Mechanism. April

2011.

