
International Journal of Open Information Technologies ISSN: 2307-8162 vol.9, no.7, 2021

Some More on the Modeling Context-Free
Languages by Nondeterministic Finite Automata

Tatiana Generalova

Abstract—A new formalism for the specification of context-
free languages is presented. In this formalism, a generalization
of the class of nondeterministic finite automata can be obtained
by using an auxiliary alphabet and imposing additional condi-
tions. Received mechanism, so-called bracketed automata, can
be used for recognizing context-free languages.

At the same time this formalism is similar to the nonde-
terministic finite automata and this fact allows using classic
algorithms of the equivalent transformation of nondeterministic
finite automata for objects of formalism that specifies the
context-free languages.

An algorithm for constructing a bracketed automaton ac-
cording to the given context-free grammar is considered.

An important problem that arises in the design and prac-
tical implementation of automation systems for constructing
translators are optimization issues; we mean here both of the
compilers themselves and of the generated executable code.

To obtain optimized variants of translators, different methods
are used in practice; one of them is to obtain various equivalent
descriptions of the compiled language. In most situations, when
developing compilers, we need to use context-free languages or
some related constructions.

In some cases, the formalism we have described makes it
possible to construct a minimal object from the point of view
of the number of states that describes the special extension of
the class of finite automata.

Keywords—compiler building automation systems, nondeter-
ministic finite automata, context-free languages, algorithms for
equivalent transformation.

I. INTRODUCTION AND MOTIVATION

There exist a lot of formal systems for describing context-
free languages. Along with systems of the generative type,
for example, a grammar, there are recognition systems that
are algorithms, possibly in the form of an automaton.

Context-free languages are specified by pushdown au-
tomata [1]. There also exist some other approaches for
the description of the languages. For instance, a graphical
method of the language representation is considered in [2].

In this paper, we consider a new formalism for describing
context-free languages [3]. We offer some examples that
show transforming context-free grammars into objects of this
formalism.

An important problem that arises in the design and prac-
tical implementation of automation systems for constructing
translators are optimization issues; we mean here both of
the compilers themselves and of the generated executable
code. To obtain optimized variants of translators, different
methods are used in practice; one of them (and, apparently,
the first in order of application) is to obtain various equivalent
descriptions of the compiled language.

Received 31.05.2021.
Tatiana Generalova, Lomonosov Moscow State University (email:

tanya.generalova@gmail.com).

These equivalent descriptions can be optimized for differ-
ent parameters; in a large number of cases, more compact
descriptions lead to more successful versions of the resulting
executable programs [4], [5].

The “compact description” concept itself can be formal-
ized in a very large number of ways. For example, for
regular construction, the minimum possible (or close to it)
number of states of a deterministic (or, in some situations,
nondeterministic) finite automaton which defines the given
language is usually used.

However, in most situations, when developing compilers,
we need to use context-free languages (or some related
constructions.) For these languages, several variants of des-
ignating them in the form of a graph are described; but,
apparently, none of these options has yet become a standard.

In [6], [7], [8], [9], [10], [11] various variants of min-
imization of ordinary finite nondeterministic automata are
proposed. We hope, described methods can be useful for
various problems in the theory of compilers.

In some cases, the formalism we have described makes it
possible to construct a minimal object from the point of view
of the number of states that describes the special extension
of the class of finite automata.

Moreover, in [12], we defined an equivalent push-down
automaton (which is an instance of the standard formalism
of the theory of languages), which can also be called a special
version of a minimal automaton.

The further direction of work is to obtain minimal au-
tomata on the basis of various variants of minimization
of ordinary finite nondeterministic automata proposed in
previous papers.

II. PRELIMINARIES

We shall use the notation from [13] for nondeterministic
finite automata (NFA for short).

Definition 1: [13] Let

K = (Q,Σ, δ, S, F) (1)

be a nondeterministic finite automaton that defines language,
denoted L(K), where
• Q is a finite set of states,
• S is a set of the initial states of the finite state control,
S ⊆ Q,

• F is a set of the final states, F ⊆ Q, and
• δ is a transition function

δ : Q× (Σ ∪ {ε})→ P(Q),

where P(Q) is a finite subset of Q. Remark, that we
shall admit ε-transitions.

For every n from set N0, we shall consider the sets

1

International Journal of Open Information Technologies ISSN: 2307-8162 vol.9, no.7, 2021

N(n) = { 1, 2, . . . , n−1, n }

and

Z(n) = {−n,−(n−1), . . . ,−2,−1, 0, 1, 2, . . . , n−1, n } .

Each element i of N(n) symbolizes i-numbered pair of
brackets. Also i symbolizes i-numbered opening bracket, and
−i denotes corresponding closing bracket.

Sometimes, we shall consider the set Z(n) as the alphabet
containing 2n+1 symbols, i.e. Σ(n)

∗, and, therefore, we shall
consider words and languages over Z(n).

For example, we can say that

4 0 4 −4 3 −3 −4 0 3 −3 0 (2)

is a word over Z(10).
Definition 2: For given n ≥ 0, we define language [Z(n)

∗].
We call it the language matched by brackets and every word
of this language is a word matched by brackets.

We define the word matched by brackets recursively:
• ε and 0 are words matched by brackets;
• if w and v are words matched by brackets, then u = wv

is also word matched by brackets;
• if w is a word matched by brackets, i ∈ N(n), then we

denoted u a word matched by brackets, and
u = iw − i;

• other word is not word matched by brackets.
The word v ∈ [Z(n)

∗] is called matched prefix if it is a prefix
of the word u ∈ [Z(n)

∗].
Thus, we get a new word matched by brackets from the

existing one by putting the latter in brackets and (or) assign-
ing to it another word matched by brackets. For example, the
word (2) is word matched by brackets.

Definition 3: We define a bracketed automaton B as
follows:

B = (Q,Σ, γζ, S, F, n), (3)

where
• Q is a finite set of states,
• Σ is a given alphabet,
• S is a set of initial states of finite state control,
• F is a set of final states of Q,
• n ∈ N0 defines the bracket set Z(n), and
• γζ is a transition function of the type

γζ : Q×Q→ P
(
(Σ ∪ {ε})× Z(n)

)
.

We consider that we define simultaneously the functions
γζγ and γζζ

γζγ : Q×Q→ P (Σ ∪ {ε}) ,
γζζ : Q×Q→ P

(
Z(n)

)
.

In this case, if condition

γζ(q′, q′′) 3 (a, i)

is fulfilled for the states q′, q′′ ∈ Q, then we assume that
conditions

γζγ(q′, q′′) 3 a and γζζ(q
′, q′′) 3 i

are fulfilled.
Functions γζγ and γζζ do not contain other values.
We shall denote that tuple (Q,Σ, γζγ , S, F) can be con-

sidered as an ordinary nondeterministic finite automaton for
the bracketed automaton (3).

We shall denote Lγ(B) a language defined by this au-
tomaton. We shall also designate a notation Lζ(B) for the
language of the automaton (Q,Z(n), γζζ , S, F).

Let us define the language of the automaton (3) and denote
it as L(B).

Definition 4: Let us suppose that for the sequence of states
q0, q1, . . . , qm ∈ Q the following conditions
• q0 ∈ S, qm ∈ F ,
• γζ(qk, qk+1) 3 (ak, ik) for each k ∈ {0, . . . ,m− 1},
• i1 i2 . . . im ∈ [Z(n)

∗]

are fulfilled. Then we believe that the word a1a2 . . . am
belongs to L(B). The language L(B) does not contain other
words.

Definition 5: The bracketed automata B1 and B2 are
called equivalent if L(B1) = L(B2).

Theorem 1: Language recognized by the automaton (3)
is the context-free language.

III. CONTEXT-FREE GRAMMARS TO BRACKETED
AUTOMATA

In this section, we present a method of constructing a
bracketed automaton in accordance with a given context-free
grammar.

Firstly, we shall describe the general constructing algo-
rithm, and then demonstrate its work by example.

A. An algorithm of transforming context-free grammars into
bracketed automaton

Algorithm 1:
(Bracketed automaton construction from a given context-

free grammar)
Input: A context-free grammar.
Output: Corresponding bracketed automaton.
Method:
Step 1. Number all the nonterminals of context-free gram-

mar and build a syntax diagram for each grammar production
according to [14].

Step 2. Transform each diagram into a graph as follows:
a) transform the input and output edges into a pair of

vertices marked with nonterminal that defines by syntax
diagram; mark these vertices by indices 1 and 2, respectively;
transform other edges into vertices with arbitrary pairwise
different labels,

b) replace all the terminal vertices of diagrams by the
edges with according terminal labels (for transition function
γζγ) and label 0 (for transition function γζζ).

Step 3. Combine received graphs.
For combining graphs for each i-numbered terminal A we

shall implement the following:
a) substitute the entries into each corresponding vertex that

also marked with A label by the transitions with label +i into
each vertex marked with A1;

b) similarly, substitute the exits from the corresponding
vertices (also labeled as A) by the transitions marked with
−i from each vertex marked with A2.

c) delete the vertices marked with A.
The bracketed automaton is determined by the constructed

graph. The vertices of the graph are corresponding to automa-
ton states. The transition function is determined by edges.
The initial and final states are corresponding to the pair
of vertices obtained from the initial symbol of the original
grammar.

The method for transforming a grammar into a graph
presented in this algorithm was proposed by A.A. Vylitok.

2

International Journal of Open Information Technologies ISSN: 2307-8162 vol.9, no.7, 2021

B. Example of constructing bracketed automaton according
to a context-free grammar

Let us consider the example of context-free grammar with
iterations for model arithmetic expressions for this algorithm:

E → T {+T}, (4)

T → F {∗F}, (5)

F → a | b | (E). (6)

The nonterminal E symbolizes the expression, it is the
initial symbol of the grammar or axiom. The nonterminal T
denotes the term, the nonterminal F is the factor, and termi-
nals a, b are the simple expressions (variables or constants).

The following syntax diagrams according to a given gram-
mar (Fig.a) are constructed in an obvious manner.

E

a

b

()

T

+

F

*

E ::=

T ::=

F ::=

a

()

E ::=

T ::=

F ::=

*

T

+

E1 E2

FT1 T2

E

F1 F2
a

b

b
Figure 1. a) Syntax diagrams for the expressions (4)–(6), Step 1;

b) Graphs based on the syntax diagrams Fig. 1a, Step 2

Transform each diagram into a graph according to step 2
of the algorithm (Fig. 1b).

Substitute the transition to the subgraph T and returning
from one into the graph E (Fig. 2a).

Similarly, substitute the transition to subgraph and return-
ing from one for F (Fig. 2b).

F

()

+

+2 -2

+3

+1 -1

-3

*

a

E1 E2

T1 T2

F1 F2

E

b

a

+2 -2

+3

+1 -1

-3

b

()

+

*

a

E1 E2

T1 T2

F1 F2

E

b
Figure 2. a) Graphs based on the syntax diagrams Fig. 1a, Step 2;

b) Graph based on the syntax diagrams Fig. 1a, Step 3

Implement recursion for the obtained graph; for this, make
a transition to E1 and returning from E2 (Fig. 3).

As a result, we obtained a graph for the arithmetic expres-
sions.

We consider the example of parsing expression a∗(a+b):

E1 −−→
+2

T1 −−→
+3

F1
a−→ F2 −−→−3 T2

∗−→ T1 −−→
+3

+2 -2

+3 -3

*

a

(+1)-1

E1 E2

T1 T2

F1 F2

b

Figure 3. Graph based on the syntax diagram Fig. 1a

→ F1
(−−→

+1
E1 −−→

+2
T1 −−→

+3
F1

a−→ F2 −−→−3 T2 −−→−2
→ E2

+−→ E1 −−→
+2

T1 −−→
+3

F1
b−→ F2 −−→−3 T2 −−→−2

→ E2
)−−→
−1

F2 −−→−3 T2 −−→−2 E2.

IV. SOME EXAMPLES OF TRANSFORMING CONTEXT-FREE
GRAMMAR TO THE BRACKETED AUTOMATA

A. For-statement

Let us consider some examples of transforming context-
free grammars according to the Algorithm 1. Syntax dia-
grams are taken from [15].

The Fig. 4 shows a syntax diagram for For-statement. We
construct graph for the diagram shown on the figure Fig. 4.
The vertices Ox are auxiliary vertices.

var

to

downto

:= Exp Exp Opdofor

For-statement ::=

Figure 4. Syntax diagram for “For-statement”

Exp

O4O5

do

-2+3

+4

-4

-3

for

For1 For2

varO1 Op
+1 -1 +2

O2 O3 O6 O7

to

downto

Figure 5. Graph based on the syntax diagram Fig. 4.

We do not show the transitions to Exp and Op. We can
implement them with the help of pairwise replacement of
edges:
O3 → Exp to O3 → Exp1, O5 → Exp to O5 → Exp1,
Exp→ O6 to Exp2 → O6, Exp→ O4 to Exp2 → O4.

B. While-statement

Let us consider the construction of a bracketed automaton
with the example of a While-statement.

While-statement ::=

while Cond OpDo

Figure 6. Syntax diagram for “While-statement”.

The resulting graph for the While-statement does not
contain transitions to Op and Exp. They can easily be

3

International Journal of Open Information Technologies ISSN: 2307-8162 vol.9, no.7, 2021

Cond Op

do
O1While1 While2O2 O3

+1 +2 -2-1
O4

Figure 7. Graph based on the syntax diagram Fig. 6.

While1

O2 O3 Op

-2+1

Cond1 Cond2ExpO5

O1

While2

O4

O8
+3

>

-4 -1 +2

-3+4

O6O7

Figure 8. Resulting graph for “While-statement”.

implemented with the help of pairwise replacement of edges:
O3 → Op to O3 → Op1, Op → O4 to Op2 → O4,
O5 → Exp to O5 → Exp1, O7 → Exp to O7 → Exp1,
Exp→ O6 to Exp2 → O6, Exp→ O8 to Exp2 → O8.

C. Repeat-statement
Let us consider the construction of a bracketed automaton

with the example of a Repeat-statement.

repeat Op

;

until Cond

Repeat-statement ::=

Cond ::=
Exp Exp>

Figure 9. Syntax diagrams for “Repeat-statement” and condition “Cond”.

repeat until
Repeat1 Repeat2Op CondO1 O2 O3 O4

+1 +2 -2-1

Figure 10. Graph based on the syntax diagram for “Repeat-statement”,
Fig. 9.

The resulting graph for the Repeat-statement does not
contain transitions to Op and Exp. They can easily be
implemented with the help of pairwise replacement of edges:
O1 → Op to O1 → Op1, Op → O2 to Op2 → O2,
O5 → Exp to O5 → Exp1, O7 → Exp to O7 → Exp1,
Exp→ O6 to Exp2 → O6, Exp→ O8 to Exp2 → O8.

V. CONCLUSION

In the article, we showed some examples of converting
context-free grammars into bracketed automata, a new for-
malism for defining context-free languages. The main feature
of the bracketed automata is the ability to consider them in
two ways, including using nondeterministic finite automata,
over a newly extended alphabet.

In some cases, the formalism we have described makes it
possible to construct a minimal object from the point of view
of the number of states that describes the special extension
of the class of finite automata.

The further direction of work is to obtain minimal au-
tomata on the basis of various variants of minimization
of ordinary finite nondeterministic automata proposed in
previous papers.

Cond1 Cond2ExpO1 O4
+1

>

-2

-1+2

O2O3

Figure 11. Graph based on the syntax diagram for condition “Cond”, Fig. 9.

+2

-2

repeat

until

Repeat1

Repeat2

OpO1 O2 O3
+1 -1

Cond1

Cond2

ExpO5 O8

O4

+3

>

-4

-3+4

O6O7

Figure 12. Resulting graph for “Repeat-statement”.

REFERENCES

[1] Aho A., Ullman J. “The theory of parsing, translation and compiling”,
V.1, Prentice-Hall, INC, Englewood Cliffs, N. J., 1972, pp. 1002.

[2] Vylitok A., “On a pushdown automata graph construction”, Vestnik of
Moscow University, S. 15, Computational Mathematics and Cybernet-
ics, 1996, no. 3, pp. 68–73 (in Russian).

[3] Vylitok A., Zubova M., Melnikov B. “On an extension of the class
of finite automata for the specification of context-free languages”,
Vestnik of Moscow University, S. 15, Computational Mathematics and
Cybernetics, 2013, no. 1, pp. 39–45 (in Russian).

[4] Wirth N. “Compiler Construct”, M.: DMK-Press, 2013, pp. 193.
[5] Wirth N., Gutknecht J., “Porject Oberon. The design of an operating

system and compiler”. 2005, pp. 441.
[6] “Some more on the finite automata”, Melnikov B.F., Vakhitova A.A.

Journal of Applied Mathematics and Computing, 1998, V. 5, no. 3,
pp. 495-505.

[7] Melnikov B.F., Melnikova A.A., “Some properties of the basis finite au-
tomaton”, Korean Journal of Computational and Applied Mathematics,
2002, V.9, no.1, pp. 135-150.

[8] Melnikov B.F., Sciarini-Guryanova N.V., “Possible edges of a finite
automaton defining a given regular language”, Korean Journal of
Computational and Applied Mathematics, 2002, V. 9, no. 2, pp. 475-485.

[9] Melnikov B., Sayfullina M., “On some algorithms of equivalent trans-
formations of nondeterministic finite automata”, Izvestiya of universites,
Mathematics. 2009, no.4, pp.67-72 (in Russian), (English translation:
Mel’nikov B., Sayfullina M., Some algorithms for equivalent trans-
formations of nondeterministic finite automata. Russian Mathematics,
(Izv.VUZ). 2009, no. 4, pp. 54-56.)

[10] Melnikov B., “Extended nondeterministic finite automata”, Funda-
menta Informaticae, 2010, V. 104, no. 3, pp. 255-265.

[11] Dolgov V., Melnikov B., “The construction of a universal finite
automaton. Part I: From theory to practical algorithms”. Vestnik
of Voronezh State University, S: Physics. Mathematics, 2013, no. 2.
pp. 173-181 (in Russian).

[12] Generalova T., Melnikov B., Vylitok A., “On the extension of the finite
automata class for context-free languages specification”, International
Journal of Open Information Technologies, 2018, V.6, no.8, pp.1-8.
(http://injoit.ru/index.php/j1/article/view/602)

[13] Melnikov B., “Once more on the edge-minimization of nondeter-
ministic finite automata and the connected problems”, Fundamenta
Informaticae, 2010, no. 3, pp. 267–283.

[14] Wirth N. “Algorithms + Data Structure = Programs”, Prentice-Hall
PTR UPPER Saddle River, N.J., USA, 1978.

[15] Grogono P., “Programming in Pascal”, 1982, M.: Mir, pp. 378.

4

	Introduction and Motivation
	Preliminaries
	Context-free grammars to bracketed automata
	An algorithm of transforming context-free grammars into bracketed automaton
	Example of constructing bracketed automaton according to a context-free grammar

	Some examples of transforming context-free grammar to the bracketed automata
	For-statement
	While-statement
	Repeat-statement

	Conclusion
	References

