
International Journal of Open Information Technologies ISSN: 2307-8162 vol. 2, no. 6, 2014

 29

Abstract — This paper provides an overview for existing and

upcoming system software projects in M2M area. In this article

we discuss system software models and solutions, rather than

network related aspects. The primary goal is to provide an

overview of existing models as well as discuss the possible

extensions. Can we describe the common points for the

different M2M software models? Are there some reused

patterns? How M2M software models are going to attract

developers? These are the main issues addressed in this article.

Keywords— М2М, communications, Smart metering,

middleware, FI-WARE.

I. INTRODUCTION

Machine-to-Machine (M2M) is a category of Information

and Computing Technology that combines communications,

computer and power technologies that enable remote

iterations with physical, chemical and biological systems and

processes [1]. Simply, M2M traditionally refers to

technologies that allow both wireless and wired systems to

communicate with other devices of the same ability. M2M

uses a device (such as a sensor or meter) to capture an event

(such as temperature, inventory level, etc.), which is relayed

through a network (wireless, wired or hybrid) to an

application (software program), translates the captured event

into meaningful information [2].

As per widely used classification scheme, the M2M

system consists of three main domains: M2M Device,

Network, and Application Domain and contains the

following key elements [3]:

• M2M Device. A device capable of replying to requests

for data contained within those devices or capable of

transmitting data contained within those devices

autonomously.

• M2M Area Network. These networks provide

connectivity between M2M Devices and M2M Gateways.

Examples of M2M Area Networks include: Personal Area

Network technologies such as IEEE 802.15, ZigBee,

Bluetooth; and local networks such as PLC, M-BUS, and

Wireless M-BUS.

• M2M Gateway. It uses M2M capabilities to ensure that

M2M Devices interwork and interconnect to the

communications networks.

• M2M Communications Networks. These are the

communications networks between M2M Gateways and

Article received May 20, 2014.

D.Namiot is senior researcher at Open Information Technologies Lab,

Lomonosov Moscow State University. Email: dnamiot@gmail.com

M. Sneps-Sneppe is with Institute of Mathematics and Computer

Science, University of Latvia. Email: sneps@mail.ru

M2M Applications (servers). They can be further broken

down into Access, Transport and Core Networks. Examples

include: xDSL, PLC, satellite, LTE, GERAN, UTRAN, W-

LAN, and WiMAX.

• M2M Application (Server). This is the middleware

layer where data goes through the various application

services and is used by the specific business processing

engines.

It is illustrated in Figure 1.

Figure 1. M2M Architecture [4]

It is, probably, the most elaborated software architecture

for M2M area. As you can see, most of the elements target

the network component. The last one only (application

server) is, formally, the software. We would like to discuss it

in this paper, as well as in the forthcoming articles. Do we

always need such a component? What kind of tasks could be

solved in this layer? Is it always a real software layer or just

a virtual group of functions? In many cases, as we see,

application server in M2M applications is the specification

of functionality, rather than the separated code.

II. M2M SYSTEM APPLICATIONS

Figure 2 demonstrates the high level M2M architecture

from ETSI [5]. The high level architecture for M2M

includes a Device and Gateway Domain and a Network

domain. Actually, that schema is suggested by ETSI, but

quite general and can be used for describing other

frameworks too.

The Device and Gateway Domain are composed of the

following elements: M2M Device, M2M Area Network and

M2M Gateway. The M2M Gateway acts as a proxy for the

Network Domain towards the M2M Devices that are

connected to it.

The Network Domain is composed of the following

elements: Access Network, Core Network, M2M Service

Capabilities and M2M applications.

On M2M Software

Dmitry Namiot, Manfred Sneps-Sneppe

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 2, no. 6, 2014

 30

M2M Service Capabilities:

- Provide M2M functions that could be shared by different

Applications.

- Expose functions through a set of open interfaces.

- Use Core Network functionalities.

- Simplify and optimize application development and

deployment through hiding of network specificities.

Actually the developer’s APIs are here. M2M applications

run the service logic and use M2M Service Capabilities

accessible via an open interface.

The goals for M2M middleware are obvious. M2M

middleware helps us with heterogeneity of M2M

applications. Heterogeneity of service protocols inhibits the

interoperation among smart objects using different service

protocols and/or API’s. We assume that service protocols

and API’s are known in advance. M2M API provides the

abstraction layer necessary to implement the interactions

between devices uniformly. The work “abstraction” here

point exactly to the above-mentioned virtual application

server. It is just a convenient form which lets us describe the

functionality.

The M2M API provides the means for the device to

expose its capabilities and the services it may offer, so that

remote machines may utilize them. Consequently, such an

API is necessary to enable proactive and transparent

communication of devices, in order to invoke actions in

M2M devices and receive the relating responses as well as

the simplified management of resources [6].

ETSI TR 102 691 [7] is, probably, the most elaborated

document in ETSI’s suite. It describes the following

required areas to M2M applications:

Management - specifies requirements related to the

management modes (malfunction detection, configuration,

accounting, etc.).

Functional requirements for M2M services - describes

functionalities-related requirements for M2M (data

collection & reporting, remote control operations, etc.).

Security - covers the requirements for M2M device

authentication, data integrity, privacy, etc.

Naming, numbering and addressing - provides the

requirements relating to naming, numbering and addressing

schemes specific to M2M.

As something significant in this part we can highlight

probably the list of potential new requirements to M2M

systems (devices) listed here.

- A M2M device should be able to register its capability

information (e.g. access technology, its serial number, its

accessible address, allowed user list, etc.) to the M2M

System.

- M2M devices and M2M gateways should be able to

perform access control that checks the access right of the

end-user.

- M2M devices should be able to communicate either

directly or via M2M gateway.

- M2M devices should be alternatively able to perform

the access control of M2M devices.

- M2M devices and M2M gateways should be able to

manage the scheduling of multiple accesses that multiple

remote parties (i.e. end-users, M2M devices or M2M

applications in M2M network, etc.) try to access one M2M

device or one M2M gateway simultaneously.

As seems to us, this statement is very important: “register

its capability information”. We think, that there is definitely

a demand for some analogues of SNMP management, where

capabilities could be defined in the abstract terms (like MIB

– management information blocks) [8]. Technically, SNMP

could run on top of the 6LoWPAN layer, but it would be

inefficient for the low power nodes that are used in M2M

networks. There are many papers, devoted to ontology

usage in M2M (and especially IoT) applications [9][10], but

as seems to us it is too far from practice yet.

ETSI devotes the special direction to Automotive

Applications [11]. As per ETSI, M2M automotive

applications encompass M2M use cases involving the

automotive or transportation industries where the involved

M2M communication modules may be embedded into a car

or transportation equipment, for whatever purpose. This

implies common requirements such as mobility management

and environmental hardware constraints, despite the

extended variety of applications addressed (insurance or

road pricing, emergency assistance, fleet management,

electric car charging management, traffic optimization, etc.).

The new requirements listed here are:

• the capability of M2M Devices to receive, store, and

execute scheduled measurements;

• the ability of Devices to poll and check for the

occurrence of events;

• the capability of Devices to autonomously establish a

connection directly to a mobile telecommunication network;

• the capability for Devices to be able to maintain M2M

communications while moving at high velocity and over a

wide geographic area;

• the ability of devices to be able to be contacted

(“called”) directly by a mobile telecommunication network

• the inclusion of position-determination capability.

By our opinion, such a division is one of the weakest

points in the whole ETSI approach. From the developer’s

point of view, it would be better to have a small unified

schema for all aspects. With this direction, ETSI approach

potentially leads to the huge set of different APIs. We saw

already the similar approach in Parlay [12] for example. It

complicates the adoption of new development tools or even

makes it impossible.

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 2, no. 6, 2014

 31

Indeed, in the Open API from ETSI we can see the big

influence of Parlay specification. The goals are obvious, and

they are probably the same as for any unified API. One of

the main challenges in order to support the easy

development of M2M services and applications will be to

make M2M network protocols “transparent” to applications.

Providing standard interfaces to service and application

providers in a network independent way will allow service

portability.

At the same time an application could provide services via

different M2M networks using different technologies as long

as the same API is supported and used. This way an API

shields applications from the underlying technologies, and

reduces the efforts involved in service development.

Services may be replicated and ported between different

execution environments and hardware platforms.

This approach also lets services and technology platforms

to evolve independently. A standard open M2M API with

network support will ensure service interoperability and

allow ubiquitous end-to-end service provisioning.

The Open API relates to several interfaces of M2M

architecture (Figure 2). For example:

- the interface between the platform and external service

providers running their services remotely,

- the interface between the platform and the customer

applying the features offered by the platform,

- a set of interfaces supporting additional functionality

(installation support, access to remote databases, remote

operation and management of the platform), etc.

Figure 2 shows the following interfaces: mIa – machine to

application interface, mId – Machine to Device interface,

dIa – device to application interface. ETSI proposes that

every device needs a service capability based a REST server

platform.

Table 1 summarizes Open API categories (with some our

remarks).

Main API sections of Services Capabilities Level are:

- Subscription and Notification (e.g. Publish/Subscribe).

- Grouping and Transactions.

- Application Interaction: Read, Do, Observe.

- Compensation (micro-payment).

- Sessions.

Figure 2. Interfaces from ETSI [11]

Table 1. ETSI Open API Categories.

ETSI Open API

categories

API contents Comments

Grouping

A group here is defined as a common set of attributes (data

elements) shared between member elements. In practice it

is about the definition of addressable and exchangeable

data sets.

Just note, as it is important for our future suggestions,

there are no persistence mechanisms for groups.

Transactions

Service capability features and their service primitives

optionally include a transaction ID in order to allow

relevant service capabilities to be part of a transaction. Just

for the deploying transactions and presenting some

sequences of operations as atomic.

In the terms of transactions management Open API

presents the classical 2-phase commit model. By the

way, we should note here that this model practically

does not work on the large-scale web applications. We

think it is very important because without scalability

we cannot think about “billions of connected devices”.

Application

Interaction

The application interaction part is added in order to

support development of simple M2M applications with

only minor application specific data definitions: readings,

observations and commands.

Application interactions build on the generic

messaging and transaction functionality and offer

capabilities considered sufficient for most simple

application domains.

Messaging The Message service capability feature offers message

delivery with no message duplication. Messages may be

unconfirmed, confirmed or transaction controlled.

The message modes supported are single Object

messaging, Object group messaging, and any object

messaging; (it can also be Selective object messaging).

Think about this as Message Broker.

Event notification The notification service capability feature is more generic It is a generic form. So, for example, geo fencing

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 2, no. 6, 2014

 32

and presence

than handling only presence. It could give notifications on

an object entering or leaving a specific group, reaching a

certain location area, sensor readings outside a predefined

band, an alarm, etc.

should fall into this category too. The subscriber

subscribes for events happening at the Target at a

Registrar. The Registrar and the Target might be the

same object. This configuration offers a

publish/subscribe mechanism with no central point of

failure.

Compensation Fair and flexible compensation schemes between

cooperating and competing parties are required to

correlate resource consumption and cost, e.g. in order to

avoid anomalous resource consumption and blocking of

incentives for investments. The defined capability feature

for micro-payment additionally allows charging for

consumed network resources.

It is very similar, by the way, to Parlay offering for

Charging API.

Sessions In the context of OpenAPI a session shall be understood to

represent the state of active communication between

Connected Objects.

OpenAPI is REST based, so, the endpoints should be

presented as some URI’s capable to accept (in this

implementation) the basic commands GET, POST,

PUT, DELETE (See an example below).

The example below illustrates the typical request-response

cycle:

URI: http://{nodeId}/a/do

Method: POST

Request

<?xml version="1.0" encoding="UTF-8"

standalone="yes"?>

<appint-do-request

xmlns="http://eurescom.eu/p1957/openm2m">

<requestor>9378f697-773e-4c8b-8c89-

27d45ecc70c7</requestor>

<commands>

<command>command1</command>

<command>command2</command>

</commands>

<responders>9870f7b6-bc47-47df-b670-

2227ac5aaa2d</responders>

<transaction-

id>AEDF7D2C67BB4C7DB7615856868057C3</transactio

n-id></appint-do-request>

Response

<?xml version="1.0" encoding="UTF-8"

standalone="yes"?>

<appint-do-response

xmlns="http://eurescom.eu/p1957/openm2m">

<requestor>9378f697-773e-4c8b-8c89-

27d45ecc70c7</requestor>

<timestamp>2010-04-

30T14:12:34.796+02:00</timestamp>

<responders>9870f7b6-bc47-47df-b670-

2227ac5aaa2d</responders>

<result>200</result>

</appint-do-response>

Let us describe the proposed standards from the modern

web development point of view. We think it is correct,

because Open API declares REST support right for the web

development. In other words, support for web developers as

the first class citizens is one of the obvious goals for ETSI.

The history of this approach is described in [13].

What could be suggested in this connection? On the first

hand, it is JSON vs. XML. It looks like JSON is the

prevailed format for data exchange in the modern web

development. The second position is asynchronous

communication. Keeping in mind the growing role of

JavaScript, the ideal interface should provide a callback-

based model for communications. The application should

post requests to the device and define some callback

function that will accept JSON data upon request

completion. So, as per our vision, the deployment of the

server-side solution should include the following steps:

- define the contact point (define callback URL via x-

etsi-contactURI header)

- perform the request

- proceed callbacks (HTTP requests) via a callback URL

But it means that we will need to prepare a CGI script for

the each callback processing. From the other side, why shall

we ignore the client side processing? The good candidates

for client side processing were Web Intents. Web Intents

enable rich integration between web applications.

Increasingly, services available on the web have a need to

pass rich data back and forth as they do their jobs. Web

Intents facilitate this interchange while maintaining the kind

of loose coupling and open architecture that has proven so

advantageous for the web. They reside purely client-side,

mediated through the User Agent, allowing the user a great

degree of control over the security and privacy of the

exchanged data [14].

Any Intent is a user-initiated action delegated to be

performed by a service. It consists of an "action" string

which tells the service what kind of activity the user expects

to be performed (e.g. "share" or "edit"), a "type" string

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 2, no. 6, 2014

 33

which specifies the data payload the service should expect,

and the data payload itself. So, we can replace callbacks

(URLs) in the Open API with JavaScript actions.

Web Intents are extensible by design. Neither the list of

actions, nor the list of media types is fixed. That is why

intents can play an important role for semantic web too [15].

Intents play the very important role in Android

Architecture. Intents bind individual components to each

other at runtime (you can think of them as the messengers

that request an action from other components), whether the

component belongs to your application or another.

Going into M2M applications, it means that our potential

devices will be able to present more integrated data for the

measurement visualization for example. The final goal of

any M2M based application is to get (collect) measurements

and perform some calculations (make some decisions) on the

collected dataset. We can go either via low level APIs or

use (at least for the majority of use cases) some integrated

solutions. The advantages are obvious. We can seriously

decrease the time for development.

We can re-phrase an original idea of Web Intents. M2M

data logging application should be aware of a user's

preferred editing Web application, rather than enforcing the

specific one that the data logging happens to be integrated

with. Web Intents put the user in control of service

integrations and makes the developers life simple. It is

based on the well-known concept of callbacks. Each

callback (response) returns JSON (not XML!) formatted

data. As per suggested M2M API we should perform several

individual requests, parse XML responses for the each of

them and only after that do some visualization. Additionally,

web intents based approach is asynchronous by its nature, so

developers do not need to organize their own asynchronous

schemes.

Also Web Intents approach lets us bypass sandbox

restrictions. In other words, developers can raise requests

right from the end-user devices, rather than always call the

server. The server-side only solution becomes bottleneck

very fast. And vice-versa, client side based request lets

developers deploy new services very quickly. For example,

right from mobile web browser. Why do not use the

powerful browsers in the modern smart-phones? At the end

of the day Parlay spec were born in the time of WAP and

dumb phones. Why do we ignore HTML5 browsers and

JavaScript support in the modern phones?

Also, as it is shown above, this approach automatically

introduces JSON versus XML communications. Again,

JSON (and especially JSONP) is a preferred format for web

development and should be welcomed by programmers.

III. FI_WARE PROJECT

The most interesting from the developer’s point of view is

FI-WARE project [16]. FI-WARE will deliver a novel

service infrastructure, building upon elements (called

Generic Enablers) which offer reusable and commonly

shared functions, making it easier to develop Future Internet

Applications in multiple sectors – building a true foundation

for the Future Internet.

The project will develop public and royalty-free Open

Specifications of Generic Enablers, together with a reference

implementation of them available for testing. This way, it is

aimed to develop working specifications that influence

Future Internet standards. FI-WARE is the cornerstone of

the Future Internet Public Private Partnership (PPP)

Program, a joint action by the European Industry and the

European Commission.

The FI-PPP follows an industry-driven, user-oriented

approach that combines R&D on network and

communication technologies, devices, software, service and

media technologies; and their experimentation and

validation in real application contexts. The platform

technologies will be used and validated by many actors, in

particular by small- and medium-sized companies and public

administrations. FI-WARE architecture is shown in Figure 3.

Figure 3. FI-PPP Programme Architecture

There are more than 60 FI-WARE Generic Enamblers (GE)

as common building blocks across Use Case projects, and

more than 100 Specific Enablers as dedicated building

blocks coming from the Use Case projects so as to support

their proof of concept and build prototypes. 17 Specific

Enablers relate to the OUTSMART project (Smart City

project) but only a few are implemented by now. Let us

name the most interesting between them:

• CKAN – an open data platform software, where data are

securely extracted from a SCADA/production system.

• Service Information Repository – aims at providing the

possibility to search/retrieve and store the information about

services, is used in Santander and Birmingham services.

A lot of work should be done on these Specific Enablers for

use as software standards for Smart City projects [17].

The high-level architecture illustrated in Figure 4 is

structured according to the key business roles and their

relationships within the overall service delivery framework

and existing IT landscapes. The applications and service

delivery framework comprises the internal key business

roles:

Broker - supports exposing services from diverse providers

into new markets, provides a monetization infrastructure.

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 2, no. 6, 2014

 34

Hoster – allows representing the different cloud hosting

providers.

Aggregator - supports domain specialists and third-parties in

aggregating services and apps for new and unforeseen

opportunities and needs.

Gateway – supports Providers and Aggregators in selecting a

choice of solutions that may provide interoperability, as a

service, for their applications.

Channel Maker – provides support for creating outlets

through which services are consumed: Web sites/portals,

social networks, mobile channels and work centers, through

which application/services are accessed.

Consumer – completes the service supply chain.

Figure 4. FI-WARE high level architecture

The Reference Architecture of the FI-WARE platform [18]

is structured along a number of technical chapters, namely:

• Cloud Hosting,

• Data/Context Management,

• Internet of Things (IoT) Services Enablement,

• Applications/Services Ecosystem and Delivery

Framework,

• Security and

• Interface to Networks and Devices (I2ND).

IV. FI-WARE DATA MODEL

As per official document, FI-WARE will enable smarter,

more customized/personalized and context-aware

applications and services by the means of a set of assets able

to gather, exchange, process and analyze massive data in a

fast and efficient way (Figure 5).

Data in FI-WARE refers to information that is produced,

generated, collected or observed that may be relevant for

processing, carrying out further analysis and knowledge

extraction. A basic concept in FI-WARE is that data

elements are not bound to a specific format representation.

Actually the whole data model in FI-WARE has been

described by the concept of NoSql [19] systems in mind.

Data items could be named and presents themselves by just

named collection of triples: <name, type, value>.

What is important, that, optionally, data elements could

have meta-data (descriptions) associated with them. Meta-

data elements could be described via collections of triples

<name, type, value> too. The data-model described in FI-

WARE could be actually perfectly supported by distributed

key-value systems [20].

The context in FI-WARE is represented through context

elements. A context element extends the concept of data

element by associating an EntityId and EntityType to it,

uniquely identifying the entity (which in turn may map to a

group of entities) in the FI-WARE system to which the

context element information refers. In addition, there may be

some attributes as well as meta-data associated to attributes

that we may define as mandatory for context elements as

compared to data elements [21].

It is very important that FI-WARE actually uses the same

model for data and meta-data. It means that from the

developer’s point of view, it should be possible to use the

same model for persistence and search for both data and

meta-data.

Figure 5. FI-WARE data model

An event in FI-WARE is an act of creating a new element.

It could be either data event (create data elements) or

context event (creates a context element). As an example, a

sensor device measures some value and periodically creates

and sends a new context element. The creation and sending

of the context element is an event. Because each event has

got either data or context elements linked to, the whole

system can see events via linked data. It makes the whole

system much more uniform (homogeneous) comparing with

M2M approach described below.

At this moment we have a wide choice for real-time

analytical systems based on key-value stores. For example,

we can mention Google Percolator [22] or Twitter Storm

[23]. It is exactly the approach needed for processing data in

FI-WARE model.

For event publishing FI-WARE roadmap suggests

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 2, no. 6, 2014

 35

ContextML [24] and SPARQL [25]. ContextML is a light-

weight XML based context representation schema in which

context information is categorized into scopes and related to

different types of entities (e.g. user, device). The schema is

also applied for encoding management messages in order to

allow for a flexible framework supporting gradual plug &

play extendibility and mobility. ContextML is tailored to be

used for REST-based communication between the

framework components.

RDF is a directed, labeled graph data format for

representing information in the Web. And SPARQL

specification defines the syntax and semantics of the query

language for RDF. SPARQL can be used to express queries

across diverse data sources, whether the data is stored

natively as RDF or viewed as RDF via middleware.

SPARQL contains capabilities for querying required and

optional graph patterns along with their conjunctions and

disjunctions. SPARQL also supports extensible value testing

and constraining queries by source RDF graph. The results

of SPARQL queries can be results sets or RDF graphs.

The obvious candidates here are standards activities from

The Open Geospatial Consortium (OGC) that focus on

sensors and sensor networks comprise [26]. On the first hand

it is Observations & Measurements Schema (O&M) as well

as Sensor Model Language (SensorML), Transducer Model

Language (TransducerML or TML), Sensor Observations

Service (SOS), Sensor Planning Service (SPS) and Sensor

Alert Service (SAS).

For example O&M supports data sampling as this:

<gml:description>

 Observation test instance: fruit mass

</gml:description>

 <gml:name>Observation test 1</gml:name>

 <om:phenomenonTime>

 <gml:TimeInstant gml:id="ot1t">

<gml:timePosition>

2005-01-11T16:22:25.00

</gml:timePosition>

 </gml:TimeInstant>

 </om:phenomenonTime>

 <om:parameter>

<om:NamedValue>

<om:name

xlink:href="http://sweet.jpl.nasa.gov/ontology/property.owl

#Temperature"/>

 <om:value xsi:type="gml:MeasureType" uom="Cel">

</om:value>

</om:NamedValue>

</om:parameter>

But keeping in mind the modern trend in web

development – shall we keep that as XML, or it is a time to

replace it with an appropriate JSON?

FI-WARE proposes also an interesting approach for

Applications/Services Ecosystem and Delivery Framework.

It is based on the heavy usage on USDL [27]. Universal

Service-Semantics Description Language (USDL) can be

used by service developers to specify the formal semantics

of web-services. Thus, if WSDL can be regarded as a

language for formally specifying the syntax of web services,

USDL can be regarded as a language for formally specifying

their semantics. USDL is as formal service documentation

that will allow sophisticated conceptual modeling and

searching of available web-services, automated composition,

and other forms of automated service integration. For

example, the WSDL syntax and USDL semantics of web

services can be published in a directory which applications

can access to automatically discover services. We target

some data models in our paper [28].

V. CONCLUSION

We think that the current development misses the larger

point of how M2M services and products get created and

deployed. In many cases, developers either have to use some

predefined platform and be locked with its restriction or

build a system completely from scratch. For M2M and

Internet of Things products to be successful, interfaces must

be simple. The complexity that lies underneath should be

completely hidden. The main problems are not devices. The

main question is service. As seems to us, at the current stage

the existing solutions very often just increase the complexity.

There are too many telecom-related issues and too few data

processing issues. The true developers-oriented stack for

M2M is yet to be created.

REFERENCES

[1] Brazell, J. B., Donoho, L., Dexheimer, J., Hanneman, R., & Langdon,

G. (2013). M2M: the wireless revolution.

[2] Schneps-Schneppe, M., & Namiot, D. (2013). Machine-to-Machine

Communications: the view from Russia. International Journal of

Open Information Technologies, 1(1), 1-5.

[3] Wu, G., Talwar, S., Johnsson, K., Himayat, N., & Johnson, K. D.

(2011). M2M: From mobile to embedded internet. Communications

Magazine, IEEE, 49(4), 36-43.

[4] Tan, Siok Kheng, Mahesh Sooriyabandara, and Zhong Fan. "M2M

communications in the smart grid: Applications, standards, enabling

technologies, and research challenges." International Journal of

Digital Multimedia Broadcasting 2011 (2011).

[5] “ETSI Machine-to-Machine Communications info and drafts”

http://docbox.etsi.org/M2M/Open/ Retrieved: May, 2014.

[6] M. Sneps-Sneppe, D.Namiot “About M2M standards and their

possible extensions” Future Internet Communications (BCFIC), 2012

2nd Baltic Congress on, 25-27 April 2012 pp. 187-193 DOI:

10.1109/BCFIC.2012.6218001

[7] Galetić, V., Bojić, I., Kušek, M., Jezic, G., Desic, S., & Huljenic, D.

(2011, May). Basic principles of Machine-to-Machine

communication and its impact on telecommunications industry. In

MIPRO, 2011 Proceedings of the 34th International Convention (pp.

380-385). IEEE.

[8] Starsinic, M. (2010, May). System architecture challenges in the

home M2M network. In Applications and Technology Conference

(LISAT), 2010 Long Island Systems (pp. 1-7). IEEE.

[9] Jeon, P. B., Kim, J., Lee, S., Lee, C., & Baik, D. K. (2011, August).

Semantic negotiation-based service framework in an M2M

environment. In Proceedings of the 2011 IEEE/WIC/ACM

International Conferences on Web Intelligence and Intelligent Agent

Technology-Volume 02 (pp. 337-340). IEEE Computer Society.

[10] Gronbek, I., & Biswas, P. K. (2009, October). Ontology-based

abstractions for M2M virtual nodes and topologies. In Ultra Modern

Telecommunications & Workshops, 2009. ICUMT'09. International

Conference on (pp. 1-8). IEEE.

[11] ETSI TR 102 898 V0.4.0, “M2M Communications; Use cases of

Automotive Applications in M2M capable networks”.

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 2, no. 6, 2014

 36

[12] Moerdijk, A. J., & Klostermann, L. (2003). Opening the networks

with Parlay/OSA: standards and aspects behind the APIs. Network,

IEEE, 17(3), 58-64.

[13] Y. Daradkeh, D. Namiot, M. Sneps-Sneppe “M2M Standards:

Possible Extensions for Open API from ETSI”. European Journal of

Scientific Research, vol. 72, N. 4, pp. 628-637

[14] http://www.w3.org/TR/2012/WD-web-intents-20120626/ Retrieved:

May, 2014

[15] R. Verborgh, et al “Functional descriptions as the bridge between

hypermedia APIs and the Semantic Web”. WS-REST '12 Proceedings

of the Third International Workshop on RESTful Design, pp. 33-40

[16] Usländer, T., Berre, A. J., Granell, C., Havlik, D., Lorenzo, J.,

Sabeur, Z., & Modafferi, S. (2013). The future internet enablement of

the environment information space. In Environmental Software

Systems. Fostering Information Sharing (pp. 109-120). Springer

Berlin Heidelberg.

[17] Namiot, Dmitry, and Manfred Schneps-Schneppe. "Smart Cities

Software from the developer's point of view." arXiv preprint

arXiv:1303.7115 (2013).

[18] Robles, T., González-Miranda, S., Alcarria, R., & Morales, A. (2012).

Web browser HTML5 enabled for FI services. In Ubiquitous

Computing and Ambient Intelligence (pp. 181-184). Springer Berlin

Heidelberg.

[19] J. Pokorny “NoSQL databases: a step to database scalability in web

environment”. Proceedings of the 13th International Conference on

Information Integration and Web-based Applications and Services,

ACM, New York, USA, 2011, pp. 278-283

[20] A. Lakshman, P. Malik “Cassandra: a decentralized structured

storage system” ACM SIGOPS Operating Systems Review archive,

Volume 44. Issue 2, April 2010, pp. 35-40.

[21] http://forge.fi-

ware.eu/plugins/mediawiki/wiki/fiware/index.php/Data/Context_Man

agement_Architecture Retrieved: May, 2014

[22] D. Peng, and F. Dabek “Large-scale incremental processing using

distributed transactions and notifications”. In OSDI ’10, 2010, pp.

251–264.

[23] Yang, W., Liu, X., Zhang, L., & Yang, L. T. (2013, July). Big Data

Real-Time Processing Based on Storm. In Trust, Security and Privacy

in Computing and Communications (TrustCom), 2013 12th IEEE

International Conference on (pp. 1784-1787). IEEE.

[24] M.Knappmeyer, et al “ContextML: A light-weight context

representation and context management schema”. Wireless Pervasive

Computing (ISWPC), 5th IEEE International Symposium on Date of

Conference: 5-7 May 2010, pp. 367 – 372.

[25] Quilitz, B., & Leser, U. (2008). Querying distributed RDF data

sources with SPARQL. In The Semantic Web: Research and

Applications (pp. 524-538). Springer Berlin Heidelberg.

[26] M. Botts, et al “OGC Sensor Web Enablement: Overview and High

Level Architecture”. In: GeoSensor Networks. Lecture Notes in

Computer Science, Volume 4540/2008, pp.175-190, DOI:

10.1007/978-3-540-79996-2_10

[27] Kona, S., Bansal, A., Gupta, G., & Hite, T. D. (2006, June). Web

service discovery and composition using USDL. In E-Commerce

Technology, 2006. The 8th IEEE International Conference on and

Enterprise Computing, E-Commerce, and E-Services, The 3rd IEEE

International Conference on (pp. 65-65). IEEE.

[28] Schneps-Schneppe, M., Maximenko, A., Namiot, D., & Malov, D.

(2012, October). Wired Smart Home: energy metering, security, and

emergency issues. In Ultra Modern Telecommunications and Control

Systems and Workshops (ICUMT), 2012 4th International Congress

on (pp. 405-410). IEEE. DOI: 10.1109/ICUMT.2012.6459700

