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Abstract—Unsupervised anomaly detection in high-
dimensional data is an important subject of research in 
theoretical machine learning and applied areas. One of 
important applications is anomaly detection in network 
traffic data, which can be useful for preventing network 
security violations. 

Unsupervised anomaly detection is based on density 
estimation, which is problematic in high-dimensional data. 
To deal with the issue dimensionality, reduction is 
performed first, and then the density is estimated in a 
space of smaller dimension.  

Recently deep learning methods have been widely used 
in high-dimensional anomaly detection. One of such 
methods is the Deep Autoencoding Gaussian Mixture 
Model (DAGMM). 

DAGMM is a combination of a deep autoencoder, 
which performs dimensionality reduction and 
reconstruction error estimation, and a Gaussian mixture 
model, which predicts if a data sample is anomalous. 

We apply DAGMM to unsupervised anomaly detection 
in network traffic data. Testing anomaly detection system 
on network data presents a problem of lack of a generally 
accepted benchmark dataset, which would be recent, 
contain different types of attacks and have labels. We 
chose to use the UNSW-NB15 dataset, which satisfies these 
requirements and has been suggested as an up-to-date 
benchmark. 

A correction to the algorithm, which improves anomaly 
detection accuracy is proposed. 

 
Keywords—network intrusion detection, anomaly 

detection, deep learning, unsupervised learning, 
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I. INTRODUCTION 
Unsupervised anomaly detection is an important area 

in machine learning, which has many applications in 
different fields, including intrusion detection systems 
(IDS). A survey of machine learning methods in IDS 
can be found in [1]. 

The central element of anomaly detection is density 
estimation. The probability density of the input data is 
estimated, and the data points in low-probability areas 
can be designated as anomalous. In case of high-
dimensional data, the density estimation in the original 
feature space is difficult because of the “curse of 

dimensionality,” when distances between any two data 
points are little different from each other, and any data 
point’s probability can be low [2].   

Network Intrusion Detection Systems (NIDS) 
monitor the traffic of the entire network by analyzing 
protocol activity. They usually belong to one of two 
classes: signature based and anomaly detection based 
systems. Signature based systems are suitable for 
detection of known anomalies and utilize supervised 
learning methods. The dataset used to train such 
systems must be labelled.  

Anomaly detection based systems can theoretically 
be made suitable for detection of novel attacks, but are 
prone to false-positive results, because is not known 
whether the learning dataset is clean or contains 
signatures of attacks. Another potential problem with 
anomaly detection IDS is difficulty in feature selection 
in the traffic dataset, especially if the data is high-
dimensional. 

Deep learning based approaches are expected to 
overcome difficulties caused by necessity to learn 
features from high-dimensional data. Surveys of deep 
learning methods in intrusion detection can be found in 
[3]-[5]. 

To deal with the “curse of dimensionality” two-step 
approaches have been proposed, where, first, the 
dimensionality is reduced, and then, in the space of 
reduced dimension, the density is estimated [6]. 
However, dimensionality reduction and density 
estimation are performed independently of each other, 
which can result in the loss of performance. On the 
other hand, simultaneous execution of both components 
is difficult in realization. 

Unsupervised anomaly detection methods can be 
classified into three major groups: 

- reconstruction-based methods, e.g. principal 
component analysis, 

- cluster analysis methods, in which initially the 
dimensionality is reduced, and then 
clusterization is performed, 

- one-class classification methods. 
 Deep Autoencoding Gaussian Mixture Model 

(DAGMM) was proposed in [7].  It improves the 
existing deep learning models for unsupervised 
anomaly detection by addressing the following issues: 

- it preserves key information from the input 
inferred by the dimensionality reduction, and 
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stores it together with the reconstruction error in 
a low-dimensional space, 

- it adds an estimation sub-network which takes a 
low-dimensional output from the GMM and 
outputs mixture membership prediction, 

- both networks are trained together end-to-end, 
without pre-training of either network.  

II. DAGMM MODEL DESCRIPTION 
The DAGMM neural network consists of two 

components – a compression network and an estimation 
network. The compression network is a deep 
autoencoder, which performs dimensionality reduction, 
produces low-dimensional representation of features, 
and sends it together with the reconstruction error to the 
input of the estimation network. The estimation network 
predicts if the data item belongs to one of the clusters, 
or is anomalous. The scheme of the network is shown in 
Fig. 1. 

 

 
Figure 1. Scheme of DAGMM neural network. 
 
The compression network receives the input data 

vector x, transformed to a standard form, and finds its 
low-dimensional representation 

𝐳𝑐 = ℎ(𝐱,𝜃𝑒), 
where ℎ() is the encoding function, θe is  a vector of 
parameters. From the low-dimensional representation 
the output vector 

𝐱′ = 𝑔(𝐳𝒄,𝜃𝑑) 
with the encoding function 𝑔() and parameters θd is 
reconstructed. From the input and output vectors we 
find the vector of features calculated from the 
reconstruction error 

𝐳𝑟 = 𝑓(𝐱,𝐱′), 
where 𝑓() is a multi-dimensional function. In this study 
two features are used:  

- Euclidean distance, 
- cosine similarity. 
The estimation network receives as input the 

reconstruction error features and the low-dimensional 
representation of the input value, and performs density 
estimation basing on the Gaussian mixture model. 

The output of the estimation network is the vector p, 
whose dimension K is equal to the number of 
components of the Gaussian mixture. From this vector 
we have the prediction of membership as 

𝜸 = softmax(𝐩), 
where 𝛾 is a K-dimensional vector. 

Based on this estimation, we have the parameters of 
the Gaussian mixture 

𝜑𝑘 =
1
𝑁�𝛾𝑖𝑘

𝑁

𝑖=1

, 
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i.e. the mixture probability, mean and covariance for the 
k-th component in GMM, where 1 ≤ k ≤ K, and N is the 
number of samples. 

Using these parameters, we can find sample energy 
according to the Gaussian mixture model 

𝐸(𝐳) = −log
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where 𝒛 =[𝐳𝑐 , 𝐳𝑟] and 𝐷 = dim (𝐳). In our case D = 3: 
one-dimensional representation and two reconstruction 
error features (Euclidean distance and cosine 
similarity). 

Using these energy values we can identify 
anomalous samples.  

III. PROPOSED IMPROVEMENT 
Samples with highest energy can be considered 

anomalies. However, it is not obvious, which measure 
can be used to objectively determine which samples are 
anomalous.  It is suggested in [7], that a pre-chosen 
threshold is set to determine high-energy samples. This 
threshold is set either arbitrarily or using pre-knowledge 
of the ratio of anomalous data in the training data.  

We suggest the following approach. Since 
anomalous samples are expected to have the highest 
energy values, in order to find them then we sort the 
energy values in decreasing order and find the largest 
interval between the neighboring values. If there are 
anomalous values, we can expect the maximal interval 
to be between them and normal samples (Fig. 2). 

 

 
Figure 2. Sample energy distribution scheme showing 

distribution of samples between clusters of the Gaussian mixture. The 
anomalous samples are identified as outliers separated by the largest 
gap in energy values. 

IV. OBJECTIVE FUNCTION 
The objective function for the training of the model 

is 
𝐽(𝜃𝑒 ,𝜃𝑑 ,𝜃𝑚) = 1

𝑁
∑ 𝐿(𝐱𝑖 , 𝐱′𝑖)𝑁
𝑖=1 + 𝜆1

𝑁
∑ 𝐸(𝐳𝑖)𝑁
𝑖=1 + 𝜆2𝑃�∑��, 

where  
𝐿(𝑥𝑖 ,𝑥′𝑖) = ‖𝐱𝑖 − 𝐱′𝑖‖22 

is the L2-norm,  
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– is a term added to avoid singularity, when the 
diagonal elements of the covariance matrices are close 
to 0. λ1 и λ2 are free parameters. 

V. TRAINING DATASET SELECTION 
When testing intrusion detection systems, it is 

necessary to compare results of different systems, 
which requires a benchmark dataset. An ideal dataset 
would   

- be relatively recent, 
- be labelled, 
- contain pre-defined splits into training and 

testing datasets, 
- be publicly available, 
- contain real network traffic, 
- include different types of attacks as well as 

normal traffic, 
- cover a long time interval. 
Such a dataset is impossible to create, and any 

available dataset would satisfy only some of these 
criteria. The main problem with creation of such a 
dataset is labelling, which for a large dataset would be 
very time-consuming.  

For a long time the standard dataset for IDS system 
testing has been KDD CUP 99 [8]. However, this 
dataset has many flaws, the most serious of which is its 
age. Besides, it suffers from repeating patterns, 
excessive presence of some types of attacks in the 
testing subset, and non-stationarity, i.e. different ratios 
of some types of attacks in training and testing data [9]. 
In recent years several alternatives to KDD CUP 99 
have been proposed, a detailed survey of which can be 
found in [10]. It is suggested there, that the most 
suitable alternatives are the CICIDS’17 [11], CIDDS-
001 [12], UGR’16 [13] and UNSW-NB15 [14] datasets. 

From these datasets we chose the UNSW-NB15 
dataset as one of few, which have the following 
qualities: 

- relative novelty, 
- free accessibility, 
- availability in the text form, 
- presence of labels.  

VI. UNSW-NB15 DATASET 
The UNSW-NB15 dataset was generated with the 

purpose of creating a benchmark dataset for NIDS 
testing. It has the following properties: 

- Simulated using the IXIA Perfect Storm tool 
during a time interval of 31 hours. There are 45 
unique IP addresses in 3 networks. 

- Pcap-files were processed by Argus и Bro-IDS 
for feature extraction. In the final form the data 
is stored in CSV files and has 49 features 
(integer, float, timestamp, binary and nominal). 
The features fall into five groups: Flow, Basic, 
Content, Time and Additionally Generated. 

- Incorporates 10 target classes – one normal and 9 
anomalous: Fuzzers, Analysis, Backdoors, DoS, 
Exploits, Generics, Reconnaissance, Shell Code 
and Worms. 

- Contains 175,341 data points and the test set 
82,332 data points. 

- The set is stationary, both train and test sets have 
the same distribution of normal and anomalous 
data.   

VII. IMPLEMENTATION DETAILS 
The data is preprocessed – numerical features are 

normalized to the interval [0,1], nominal features are 
transformed to binary vectors using one-hot encoding. 
After the preprocessing the data has dimension 128 with 
each feature being a number within the [0,1] interval. 

The neural network is implemented with the 
following parameters. In the autoencoder the size of the 
input layer is equal to the number of features in the pre-
processed input data. The size of each successive layer 
Nl equals ⌊𝑁𝑙−1/2⌋, where Nl-1 is the size of the previous 
layer, until 𝑁𝑙 = 1. As the activation function tanh() is 
used. 

In the estimation network the sizes of layers are 3, 
20, 10, K. 

VIII. RESULTS 
The data is divided into training and testing sets. 

The training set is created by random sampling of the 
selected portion of the total dataset. The remaining data 
is left for the testing set. In the first experiment only 
normal data is used for training, for further experiments 
a small percentage of attack data is added to the training 
set. This percentage is gradually increased from 1% to 
20%. Initially the ratio between the train and test sets 
sizes is 3:1. Subsequently, the experiment with normal 
data is repeated for the ratio of 9:1.  

Table 1 presents accuracy, precision, recall and F1-
score of the DAGMM execution on the test dataset with 
different ratio of attack data added to the training data. 
The results indicate that the performance declines 
insignificantly when a small number of attacks is added 
to the training data.  

 
Table 1. Results of testing depending on the ratio of attacks in the 

training data with the anomalous sample energy threshold determined 
by the largest gap in energy values (Fig. 2). The ratio between the 
training set and testing set lengths is 3:1. 

 
Attacks 

ratio 
Accuracy Precision Recall F1 

0% 0.8946 0.8950 0.9994 0.9443 
1% 0.8917 0.8918 0.9998 0.9427 
5% 0.8771 0.8790 0.9975 0.9345 

10% 0.8616 0.8632 0.9977 0.9254 
20% 0.8311 0.8319 0.9989 0.9077 

 
Table 2 shows the results of experiments with the 

energy threshold value defined by an arbitrarily set 
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percentile cut-off. The training set contains only clean 
data. Several values of the threshold are tested, and all 
measures are lower, than those from the first experiment 
(row for 0% attack rate in Table 1). These results show 
that it is impossible to pre-select the threshold to 
outperform the algorithm with the sample energy 
threshold selected by the largest gap in the energy 
values. 
 

Table 2. Results of testing with arbitrary energy threshold. The 
training set is clean from attacks, the ratio between the training set and 
testing set lengths is 3:1. 

 
Threshold Accuracy Precision Recall F1 

1% 0.8868 0.8961 0.9880 0.9398 
5% 0.8611 0.9047 0.9443 0.9241 
10% 0.8524 0.9097 0.9272 0.9184 
20% 0.8378 0.9170 0.9003 0.9086 
 
 
Table 3 presents the same results as in Table 1 with 

the ratio between the training set and test set lengths 
being 9:1. 

 
Table 3. Results of testing depending on the ratio of attacks in the 

training data with the anomalous sample energy threshold determined 
by the largest gap in energy values (Fig. 1). The ratio between the 
training set and testing set lengths is 9:1.  

 
Attacks 

ratio 
Accuracy Precision Recall F1 

0% 0.9547 0.9551 0.9997 0.9768 
1% 0.9487 0.9509 0.9976 0.9737 
5% 0.9298 0.9347 0.9944 0.9636 

10% 0.8988 0.9166 0.9783 0.9465 
20% 0.8620 0.8726 0.9861 0.9259 

 
From these tables we can conclude that setting the 

sample energy threshold using the largest gap between 
the neighboring points is more reliable than using a pre-
selected percentile cut-off.  

IX. CONCLUSION 
We studied the application of the Deep 

Autoencoding Gaussian Mixture Model unsupervised 
learning algorithm to anomaly detection in the UNSW-
NB15 dataset. It is found that the algorithm shows good 
results, which deteriorate insignificantly when the 
training data contain a small amount of data with 
attacks. 
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