
International Journal of Open Information Technologies ISSN: 2307-8162 vol. 8, no.12, 2020

Abstract—The paper proposes a unified declarative

approach to developing and integrating medical information
systems. Two main usage scenarios for data access are
considered – retrieving patient-based medical history for
complex diagnostic scenarios, and retrieving research-based
historical data for generalized statistical analysis. The concept
of metamodel is introduced as a descriptive layer used to inter-
integrate data access, expert system development and
evaluation, and user interface for interacting with stored data
and predictive models. Proposed metamodel structure can be
used in order to generalize and simplify data access and
validation independently of specific database or storage
solution, and provide a common inter-application
communication API. It also can be used to aggregate and
translate individual entity information to datasets for
developing and verifying supervised machine learning models
and verifying rule-based inference models, allowing to create
and analyze various types of decision-making systems based on
provided data. Finally, using the metamodel for medical
information systems development also allows to procedurally
generate corresponding form-based and list-based views to
rapidly prototype user interfaces based on common controls,
for any given record data structure.

Keywords—decision-making systems, medical systems,
metamodel.

I. INTRODUCTION
Medical information systems are one of the most

important directions of research & development in IT.
Deeper informational integration in medical practice enables
usage of modern coherent solutions for solving various
problems. Most commonly, these problems are related to
patient information processing in one way or another –
storing and actualizing information on patient’s medical
history, diagnostic research data, therapeutic measures. Data
processing also includes proposing diagnostics and treatment
strategies using medical expert systems and decision support
systems. Processing an entire set of data available for a
specific patient simplifies diagnosis, since it allows to
project complex cases based on disjointed results for various
different examinations, while integrating diagnosis process
with expert systems allows for additional insights and
increases the overall quality of medical services [1].

One of the challenges for inter-integration of various
medical information systems within a single medical

Manuscript received September 30, 2020.
A. Kurachkin is with Belarusian State University, Minsk, Belarus

(phone: +375 29 304 53 21; e-mail: alex.v.kurochkin@gmail.com).

establishment is the absence of a common standardized
interoperability model. Medical information systems employ
different types of databases and storages, specific diagnostic
hardware and respective software solutions, various formats
and protocols for storing and transmitting information.

One of the most well-known solutions for medical systems
integration within a single medical establishment is DICOM
(Digital Imaging and Communications in Medicine)
standard. This standard specifies file layer for information
storage and communications layer for network
communication on transport and application OSI layers over
TCP/IP and HTTP protocols, respectively. The biggest
disadvantage of DICOM is the fact that the standard is the
rigid DICOM file structure for storing information, focused
primarily on working with images or series of images. In
addition, the attribute model of the DICOM file standard is
redundant (i.e. the same research parameters can be
represented by several distinct attributes), which complicates
the initial data entry and the development of graphical user
interfaces for information systems using DICOM. In
addition, the standard is not adapted for batch processing of
several patient records for a specific type of research, which
leads to additional difficulties in statistical analysis within a
specific research type and complicates its usage while
developing and verifying expert system and decision support
system models [2].

To solve these problems, this paper considers a
generalized model of a medical information system,
according to which any information system can implement a
common interface for simplified inter-integration. This
model assumes 3 main use cases:
1) storage of general medical history information;
2) inputting and storing research-specific data on concrete

diagnostic and therapeutic procedures;
3) development, testing and integration of expert systems

and decision support systems based on available data.

II. DATA METAMODEL FOR MEDICAL INFORMATION
SYSTEMS

Any information system operates with a certain set of
structured information based on so-called data model – a
declarative description of entities and their unique
characteristics that can be distinguished within the data
source. Usually, a data model is understood as a logical data
scheme – the organization of individual objects, subjects and
their relations, expressed in a dataset, in accordance with the
requirements of the domain.

Integrating medical data management and
decision-making systems with common

metamodel
Aliaksandr Kurachkin

49

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 8, no.12, 2020

There are two main problems of working with the logical
data schema – the complexity of projecting the logical
scheme onto the scheme of any storage or database
management system (DBMS), and the variability of the
scheme itself [3].

The logical schema sets the characteristics of individual
entities and their relationships in the form of simple logical
statements. To map these statements to the storage schema
of specific database management systems, an additional
conversion step is required. For example, relational DBMSs
require data normalization to project a logical data schema
into a relational one. In many cases, this projection
(including normalization) of the logical schema can be
performed in various mutually exclusive ways. At the same
time, the specific data schema definition of used DBMS may
differ significantly from the logical schema, since it may be
necessary, in order to comply with the rules for organizing
the information of the DBMS data schema, to introduce
additional structures that cannot be mapped to the logical
schema (for example, additional link tables are required to
implement a "many-to-many" relationship in relational
DBMS).

The variability of the logical schema arises naturally due
to the fact that all possible characteristics of the individual
components of the data model cannot be taken into account
at the design stage. Because of this, it becomes necessary to
modify the logical schema “on the fly”, during its use; if, at
the same time, the logical schema also specifies the format
of the physical data organization for the corresponding
storage scheme, any modifications to the scheme require
rebuilding data storage structure on the medium from
scratch. In addition, individual elements of a schema
(usually attributes) can be optional or added ad-hoc, and
their inclusion to the schema significantly complicates
aggregation and accumulative processing of data.

To solve this problem and form a generalized structure for
working with heterogeneous types of data, a metamodel
concept is proposed. A metamodel is a data model that is
used to describe the format and structure of information that
is operated on by a particular medical system or storage. The
metamodel, in its essence, is close to schema description
languages, such as DDL (Data Definition Language) in
relational DBMS based on SQL; however, in addition,
metamodel can be used to generate necessary views for
displaying and editing data, as well as for organizing them in
a structure suitable for building expert systems and decision
support systems.

The proposed structural diagram of various modules of
the medical information system, as well as the links of these
modules with the metamodel, is shown in Fig. 1. As can be
seen from the presented scheme, the metamodel of the
medical information system is used to solve 4 types of tasks:
formalization and generalization of the data access interface,
generation of the user interface, communication of the user
interface with the data access layer, as well as working with
expert systems and decision support systems.

III. USING THE DATA METAMODEL TO GENERALIZE THE
DATA ACCESS INTERFACE

Like schema definition language in relational DBMS,
metamodel must specify a descriptive representation of
entities, attributes and their types, as well as their inter-
relationships. To provide a sufficient model structure
representation within the metamodel, it is proposed to
leverage JSON Schema – a well-known open standard for
describing entities expressed in JavaScript Object Notation
(JSON) with their attributes and validation constraints [4].

Describing a metamodel using JSON Schema solves two
main tasks – building data access interface based on
provided type information, and model validation.

Data access

Validation Long-term
storage

API for data access based on GraphQL

Data schema definition

Graphical user interface

Working with expert systems

User interface generation

Sampling

Hypothesis testing

Building expert systems
based on supervised

machine learning

Testing expert systems on
historical data

Integration with the user
interface

Working with decision-
making modules

Mapping attributes to
interface elements

Validation integration

Generating UI for a single
record and a list of records

Working with historical
data

Metamodel

Figure 1. Structural diagram of main medical information
system modules and their relationship with the metamodel

When designing any kind of interaction with one or more

medical information systems, information about the schema,
available as part of the metamodel, can be used directly
when accessing these systems for any CRUD (Create, Read,
Update, Delete) operation – any authorized client
application can work directly with any data source available
based on the description provided by the metamodel. The
metamodel itself also allows for strong typing and automatic
generation of client interfaces, since it provides all the data
about entities, attributes, and relationships. Based on the
schema described in the metamodel, a server-side interface
can be generated for implementing any type of API that can
be used to access the described entities. It is proposed to use
the GraphQL standard as a universal solution for providing
an external API for data access [5].

In addition to explicit type annotations for the data access
interface, metamodel schema also allows to declaratively
specify validation logic for program and user input, when
related entities are added or modified. So, when external
APIs are used to communicate via auto-generated interface
to create a new entity with a specified set of attributes, this
set can be automatically checked for correctness relative to
the schema specified in the metamodel immediately before
executing actual storage-backed modification. The JSON
Schema standard defines a wide set of keywords for

50

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 8, no.12, 2020

validating scalar and composite attributes by type and value,
and also allows for more fine-grained validation of numeric
values (minimum, maximum, multipliers, etc.), string values
(length, adherence to a certain formats like date or email
address, or matching against regular expression), as well as
nested objects and arrays.

At the level of the information system itself, the
metamodel and description of data types can be used to
generate a data access middleware to describe the data
schema of the underlying storage, for example, when using
ORM frameworks, Repository pattern or Active Object
pattern. In addition, some DBMSs allow generating queries
in the appropriate schema description language using a
JSON Schema.

Thus, the proposed metamodel schema definition allows it
to be used as an entry point for describing and typing the
entities, as well as for more complex validation of individual
attributes of these entities. The use of JSON Schema, a well-
known open standard, greatly simplifies the integration of
such a description with other existing solutions.

IV. USING THE DATA METAMODEL TO GENERATE THE USER
INTERFACE

The basis of user interaction with any information system
is the graphical user interface. Traditionally, a user interface
is a static collection of controls that are manually associated
with attributes of a specific entity or view model. Typical
operations that a graphical user interface should support
when working with freeform entities are:
1) viewing multiple entities in a list view, with support for

sorting, searching and filtering by individual attributes;
2) viewing detailed information on a single entity;
3) adding a new entity;
4) modification of an existing entity;
5) deleting one or more entities.

For most information systems, the described operations
are implemented in a fairly uniform manner and differ only
in the type and format of the input data. For example, an
individual patient or a separate medical examination
protocol can act as an entity, and in both cases the graphical
user interface to support the described operations will be
similar. Thus, it is proposed to generalize the mechanism for
generating the user interface itself. In general, the
metamodel contains sufficient data to generate a graphical
user interface describing the entity fields that are used within
a specific medical system.

For example, if a medical information system operates
with examination protocols, a specific protocol may be
represented by a number of research results mapped to
appropriate entity attributes. To form the user interface, it is
sufficient to compare the description of a specific entity
attribute corresponding to the examination protocol field
with a specific user interface control element. In the
proposed model, the following strategies for generating the
user interface are implemented:
1) text fields: single line or multiline text input fields,
2) numeric fields: single-line text input fields with a

restriction on numeric values,
3) date and/or time: a special form of text input field with

date picker (calendar), time picker and format
restrictions,

4) binary categorical fields: checkboxes,
5) categorical fields with three or more categories: drop-

down lists,
6) categorical fields with multiple selection: multiple

choice dropdowns,
7) multiple criteria aggregate score: a set of checkboxes

for each of the criteria,
8) single reference fields: entity selection field with

additional lookup UI and the ability to unbind,
9) multiple reference fields: an inner list with additional

lookup UI to add elements and ability to unbind.
Processing with text, numeric, and categorical fields is

implemented using standard user interface elements.
Multiple criteria aggregate scores are formed on the basis of
a set of characteristics that are not mutually exclusive, and
their inclusion or exclusion is used to calculate the resulting
score (for example, the ASPECTS scale). In this case, the
formation of the final score by the values of the selected
characteristics occurs automatically, i.e. metadata
description contains base scale value and score increments
for each of the options. When working with reference fields,
a special interface for displaying a single link or a nested list
is implemented, while creating or replacing a link to another
entity is implemented through a separate dialog box with the
ability to search and filter; unlinking (removing the reference
between entities) is also supported.

The automated generation of the user interface allows
using the metamodel as a single point of description of both
data formats and the user interface itself. In addition,
individual validation functions, described as validation
constraints within the metamodel, can be automatically
included within the client user interface, which simplifies
data entry and allows the system to provide feedback to end
users directly upon entry without waiting for service-side
validation. For example, if a certain regular expression is
specified as an additional validation attribute for a certain
text field within the metamodel, when generating the user
interface, such validation can be additionally performed
directly on the interface application itself, either as a
reaction to user input or before sending serialized data to the
service, and if there is an incorrect input, the user will
receive an error message immediately, before submitting the
form, providing a more responsive user experience. It should
be noted that the presence of client validation does not
eliminate the need for additional validation on the side of the
application itself, since a potentially incorrect request can be
generated not only by a client application with a user
interface, but also by any other application with access to the
external API of a medical information system.

In addition to directly adding and editing information
about individual entities of the information system, based on
the metamodel data, a user interface can be generated in a
similar way for viewing the list of records, searching and
filtering by individual fields. It is proposed to use a tabular
view as the main view for a set of entities. In this view, each
record is displayed as a row in the table, and the columns
correspond to the attributes of the records. For greater
flexibility, individual columns can be reorganized or hidden,

51

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 8, no.12, 2020

and to simplify user access, each metamodel can additionally
specify a standard set and order of columns for the default
table view. In addition to directly displaying the list, the
table view allows sorting by any column, as well as
searching by any column, which is translated into the
corresponding requests for data within the target system, that
can, in turn, translate those requests into concrete data
storage queries, based on the selected storage mechanism.
The metamodel can also contain markers about whether any
particular field should be excluded from filtering (search)
and sorting, since such operations may not make sense for
some attributes.

V. USING THE METAMODEL TO WORK WITH EXPERT
SYSTEMS AND DECISION SUPPORT SYSTEMS

One of the key tasks of the metamodel is to simplify access
to data to develop and verify expert systems and decision
support systems.

When working with expert systems based on data, it is
possible to use the to generate a request can to the
information system itself to form a training dataset for the
model. At the same time, the request for historical data can
list the fields that need to be used as input features, and also
indicate the target fields that must be determined by a
particular model when forming systems based on supervised
machine learning methods.

Individual queries for data can be complex. Since the
input data vectors in supervised machine learning models
must be of a fixed length, complex nested attributes must be
appropriately transformed when sampling, depending on the
logic of a particular expert system. Thus, in general, data
fetching requires support for arbitrary queries with
aggregations, filtering, and other types of transformations.
The use of GraphQL as a base API allows, in addition to
direct access to data, to implement arbitrary query support in
a unified and uniform manner [5]

In a similar way, cross-validation samples can be formed
for testing existing expert systems and verifying both
statistical (supervised machine learning) models and formal
rule-based expert systems.

Using a single point of access to obtain initial data allows
to organize a pipeline for rapid prototyping, testing and
comparison of various types of decision support models, as
well as tuning their hyperparameters.

In addition to providing a single point of access for the
formation of samples, the developed decision support
systems can subsequently be integrated into the generated
user interfaces of the medical information system. In this
case, metamodel allows describing a set of rules that allow
the conversion of attributes values filled in by the user into
an input vector for a specific decision support model, after
which a control element can be added to the user interface to
display the prediction of the support system based on the
entered information. Interface unification allows making
predictions for both existing entries and new entries. In
addition, the user interface form of creating a new
examination protocol can be used as an interface for direct
access to the decision support system, with the prediction of
the expert system displayed directly when entering protocol

fields. The specialist can see that prediction immediately and
rapidly make certain diagnostic decisions.

VI. CONCLUSION
The paper presents a generalized architecture of a medical

information system based on a concept of metamodel. It is
shown that the descriptive definition and typing of entities
that are used within the system make it possible to optimize
the development of such a system by automated generation
of methods for data validation, working with long-term
storage, forming samples based on queries of varying
complexity, building a graphical user interface and
providing the ability to develop, test and integrate various
predictive models based on expert systems and decision
support systems.

On the basis of the proposed generalized approach, 3
systems have been implemented for the integration of
decision support systems in various fields of medicine: an
expert system for predicting the choriality of multiple
pregnancies based on the results of prenatal diagnostics
integrated in Republican Scientific and Practical Center
“Mother and Child” [6], an expert system for determining
degenerative optic neuropathies based on the results of
optical coherent tomography and scanning laser polarimetry
integrated in Ophthalmological Consultative and Diagnostic
Center of the 3rd City Clinical Hospital in Minsk [7], as well
as an expert system for predicting the outcome of
thrombolytic therapy on the basis of City Clinical
Emergency Hospital of Minsk [8]. The generalization of the
approach to the formation of samples for the provided
storages in these medical systems made it possible to
generate the necessary data for developing and verifying
expert models, and the generation of the user interface
allowed the specialists to use the developed models in
clinical practice. Even though the problems considered
cover different areas of medical expertise, the similarity of
the requirements confirms that the proposed model of the
medical expert system and described metamodel definition
can be used to generalize the most typical stages of
developing such systems and significantly reduce the time
for their deployment.

ACKNOWLEDGMENTS
 Author expresses gratitude to medical establishments that
provided necessary data and allowed to test and integrate
proposed solutions: Republican Scientific and Practical
Center “Mother and Child”, Ophthalmological Consultative
and Diagnostic Center of the 3rd City Clinical Hospital in
Minsk and City Clinical Emergency Hospital of Minsk

REFERENCES
[1] M. F. Collen, W. E. Hammond. The History of Medical Informatics

in the United States (Health Informatics). New York: Springer, 2nd
ed, 2015, 777 p.

[2] O. S. Pianykh. Digital Imaging and Communications in Medicine
(DICOM): A Practical Introduction and Survival Guide. New York:
Springer, 2nd ed, 2009, 602 p.

[3] R. Elmasri, S. Navathe. Fundamentals of Database Systems. New
York: Pearson, 7th edition, 2015, 1280 p.

[4] T. Marrs. JSON at Work: Practical Data Integration for the Web.
Cambridge, MA: O’Reilly Media, 2017, 376 p.

52

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 8, no.12, 2020

[5] E. Porcello, A. Banks. Learning GraphQL: Declarative Data

Fetching for Modern Web Apps. Cambridge, MA: O’Reilly Media,
2018, 198 p.

[6] O. V. Pribushenya, A. V. Kurochkin. “Assessment of choriality in
multiple pregnancies by modern expert and decision-making
systems” Modern perinatal medical technologies in solving problems
of demographic security, vol. 10, 2017, pp. 106-111.

[7] T. V. Kachan, A. V. Kurochkin, et. al. “Role of artificial neural
networks in detecting early ganglyonar retinal cell death in patients
with degenerative optic neuropaties”, Ophtalmology. Eastern
Europe, vol. 9, iss. 4, 2019, pp.445-458.

[8] K. V. Senko, A. S. Fedulov, A. V. Kurochkin, E. A. Halavataya
“Prognosing the outcome of thrombolytic therapy in patients with
ischemic stroke based on neural network analysis”, Neurology and
neurosurgery. Eastern Europe., submitted for publication.

53

	I. INTRODUCTION
	II. Data Metamodel for Medical Information Systems
	III. Using the Data Metamodel to Generalize the Data Access Interface
	IV. Using the Data Metamodel to Generate the User Interface
	V. Using the Metamodel to Work with Expert Systems and Decision Support Systems
	VI. Conclusion
	Acknowledgments
	References

